求多维函数极值的一种算法,由Nelder和Mead提出,又叫单纯形算法,但和线性规划中的单纯形算法是不同的,由于未利用任何求导运算,算法比较简单,但收敛速度较慢,适合变元数不是很多的方程求极值,算法的基本思想如下:
给定n个特征,可以构造一个具有n+1个顶点的单纯形,初始化时需(n+1)*n维矩阵(看成是有n+1个顶点的单纯形) ,矩阵的每一行为n元向量,x0为第一行,xi=x0+r*ei,r为对问题的特征长度大小的估计值,ei为单位向量,x0可初始化为全为1的向量,即认为每个特征权重是相同的,然后选取其余的,在选取过程中,r可以取相同的值也可以取不同的值(r可以看作是对第i个特征权重的调整) 。
算法运行过程(以机器翻译中的rerank为例):
假定BLEU=f(特征的和),对n+1个顶点(n维向量)分别计算BLEU值(取相反数),然后从中选出BLEU(相反数)最大,次大和最小的三个点,算法每次都是把其中的最大点对应的各权重进行调整,使其变小向最小点靠拢,调整完毕后,计算其对应的BLEU,再从这些BLEU中选出BLEU(相反数)最大,次大和最小的三个点,一直迭代下去,直到最高点到最低点的比率范围合适或达到最大迭代次数为止。
源码:
double famoeb(double x[],vector<double> feat)
{//计算所有特征*权重的和
double y=0.0;
for(int i=0;i<FeatNum;i++)
{
y+=x[i+1]*feat[i];
}
return y;
}
//单纯形算法
void amoeba(double p[],double y[],int mp,int np,int ndim,double ftol,int& iter)
{
int i,j,ihi,inhi,mpts,nmax=20;
double ypr,yprr,rtol,alpha=1.0;
double beta=0.5;
double gamma=2.0;
int itmax=500;
double pr[21],prr[21],pbar[21];
mpts=ndim+1;
iter=0;
do
{
int ilo=1;
if(y[1]>y[2])
{
ihi=1;
inhi=2;
}
else
{
ihi=2;
inhi=1;
}
for(i=1;i<=mpts;i++)
{//寻找函数值中的最大,最小和次大值
if(y[i]<y[ilo])
{
ilo=i;
}
if(y[i]>y[ihi])
{
inhi=ihi;
ihi=i;
}
else
{
if(y[i]>y[inhi])
{
if(i!=ihi)
{
inhi=i;
}
}
}
}//结束寻找各种函数极值
rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo]));//计算从最高点到最低点的比率范围,如合适则返回
if(rtol<ftol)
{
erase(pbar,prr,pr);
return;
}
if(iter==itmax)//如到了最大的迭代次数,则返回
{
cout<<"amoeba exceeding maximum iterations."<<endl;
return;
}
iter=iter+1;//进行下一次迭代
for(j=1;j<=ndim;j++)
{
pbar[j]=0.0;
}
for(i=1;i<=mpts;i++)
{
if(i!=ihi)
{
for(j=1;j<=ndim;j++)
{
pbar[j]=pbar[j]+p[(i-1)*np+j];
}
}
}
for(j=1;j<=ndim;j++)
{
pbar[j]=pbar[j]/ndim;
pr[j]=(1.0+alpha)*pbar[j]-alpha*p[(ihi-1)*np+j];//求反射点
}
vector<int> BestNo;
ChooseOneBest(pr,numSentences,alldata,StartEndIndices,BestNo);
//开始计算BLEU值
vector<pairnum> initialScore(N_gram);
double referenceLength=0.0;//参考翻译总长度
for(int k=0;k<numSentences;k++)
{
int sent=BestNo[k];//当前句子的最好候选翻译的序号
for(int l=0;l<N_gram;l++)
{
initialScore[l].left+=alldata[sent].ngram_data[l].left;
initialScore[l].right+=alldata[sent].ngram_data[l].right;
}
referenceLength+=alldata[sent].closest_length;
}
ypr=-BLEU(initialScore,referenceLength);//计算本轮lamda所对应的bleu
if(ypr<=y[ilo])
{//得到一个比最佳点稍好的结果,用gamma做一次外推
for(j=1;j<=ndim;j++)
{
prr[j]=gamma*pr[j]+(1.0-gamma)*pbar[j];
}
vector<int> BestNo1;
ChooseOneBest(prr,numSentences,alldata,StartEndIndices,BestNo1);
//开始计算BLEU值
vector<pairnum> initialScore1(N_gram);
double referenceLength1=0.0;//参考翻译总长度
for(int m=0;m<numSentences;m++)
{
int sent=BestNo1[m];//当前句子的最好候选翻译的序号
for(int n=0;n<N_gram;n++)
{
initialScore1[n].left+=alldata[sent].ngram_data[n].left;
initialScore1[n].right+=alldata[sent].ngram_data[n].right;
}
referenceLength1+=alldata[sent].closest_length;
}
yprr=-BLEU(initialScore1,referenceLength1);//计算本轮lamda所对应的bleu
if(yprr<y[ilo])
{//以扩张点prr作为新的单纯形中的点
for(j=1;j<=ndim;j++)
{
p[(ihi-1)*np+j]=prr[j];
}
y[ihi]=yprr;
}
else
{//以反射点pr作为单纯形中得点
for(j=1;j<=ndim;j++)
{
p[(ihi-1)*np+j]=pr[j];
}
y[ihi]=ypr;
}
}
else
{//反射点不如最佳点,同次高点比较
if(ypr>=y[inhi])
{//反射点不如次高点,取一个中等程度低的点作一次一维收缩
if(ypr<y[ihi])
{
for(j=1;j<=ndim;j++)
{
p[(ihi-1)*np+j]=pr[j];
}
}
y[ihi]=ypr;
for(j=1;j<=ndim;j++)
{
prr[j]=beta*p[(ihi-1)*np+j]+(1.0-beta)*pbar[j];
}
vector<int> BestNo2;
ChooseOneBest(prr,numSentences,alldata,StartEndIndices,BestNo2);
//开始计算BLEU值
vector<pairnum> initialScore2(N_gram);
double referenceLength2=0.0;//参考翻译总长度
for(int s=0;s<numSentences;s++)
{
int sent=BestNo2[s];//当前句子的最好候选翻译的序号
for(int t=0;t<N_gram;t++)
{
initialScore2[t].left+=alldata[sent].ngram_data[t].left;
initialScore2[t].right+=alldata[sent].ngram_data[t].right;
}
referenceLength2+=alldata[sent].closest_length;
}
yprr=-BLEU(initialScore2,referenceLength2);//计算本轮lamda所对应的bleu
if(yprr<y[ihi])
{//以prr作为新单纯形中的点
for(j=1;j<=ndim;j++)
{
p[(ihi-1)*np+j]=prr[j];
}
y[ihi]=yprr;//更新当前最高点出的函数值
}
else
{//单纯性太大,缩小原来的单纯形
for(i=1;i<=mpts;i++)
{
if(i!=ilo)
{
for(j=1;j<=ndim;j++)
{
pr[j]=0.5*(p[(i-1)*np+j]+p[(ilo-1)*np+j]);
p[(i-1)*np+j]=pr[j];
}
vector<int> BestNo3;
ChooseOneBest(pr,numSentences,alldata,StartEndIndices,BestNo3);
//开始计算BLEU值
vector<pairnum> initialScore3(N_gram);
double referenceLength3=0.0;//参考翻译总长度
for(int u=0;u<numSentences;u++)
{
int sent=BestNo3[u];//当前句子的最好候选翻译的序号
for(int v=0;v<N_gram;v++)
{
initialScore3[v].left+=alldata[sent].ngram_data[v].left;
initialScore3[v].right+=alldata[sent].ngram_data[v].right;
}
referenceLength3+=alldata[sent].closest_length;
}
y[i]=-BLEU(initialScore3,referenceLength3);//计算本轮lamda所对应的bleu
}
}
}
}
else
{//反射点好于次高点,以反射点pr作为单纯形中得点
for(j=1;j<=ndim;j++)
{
p[(ihi-1)*np+j]=pr[j];
}
y[ihi]=ypr;
}
}
}while(1);
}
posted on 2006-01-17 13:22
Thunder 阅读(11777)
评论(10) 编辑 收藏 引用