分析setup_arch(setup.c):
setup_processor 设置处理器的类型,并进行初始化
setup_machine 返回机器类型描述结构体信息 setup_arch()对内核参数的解析 setup_arch()函数是体系结构相关的内核初始化过程,这其中对内核参数有涉及的变量和操作如下 void __init setup_arch(char **cmdline_p) { char *from = default_command_line; //定义了一个指向default_command_line的指针 … //这里可能存在一些对from操作的machine-dep的函数 … memcpy(saved_command_line, from, COMMAND_LINE_SIZE); //这时的from所指向的就是完整待解析的内核参数,将它复 //制到saved_command_line中去(以供start_kernel()打印) //之所以不直接使用default_command_line是因为在此之前 //有可能定义一些具体板子相关的对from的操作 saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; //最后一位置为NULL parse_cmdline(&meminfo, cmdline_p, from); //调用parse_cmdline处理from指向的内核参数中关于内存的//部分 } parse_cmdline 用于解析内核参数中关于内存的部分 parse_cmdline对内核参数的解析 parse_cmdline做了三件事,首先它解析了from所指向的完整的内核参数,中关于内存的部分,其次它将没有解析的部分复制到command_line中,最后它将start_kernel()传进来的内核参数指针指向command_line 内核参数中的 “mem=xxxM@xxx”将会被parse_cmdline解析,并根据结果设置meminfo,而其余部分则被复制到command_line中
判断是软reboot还是硬reboot 指明代码段和数据段的起始地址和结束地址 bootmem_init()为了在启动阶段描述内存使用情况我们需要一些内存空间,这些空间叫做bootmem void __init bootmem_init(struct meminfo *mi) { struct node_info node_info[NR_NODES], *np = node_info; unsigned int bootmap_pages, bootmap_pfn, map_pg; int node, initrd_node; bootmap_pages = find_memend_and_nodes(mi, np);后面会详细分析这个函数,为了在 启动阶段描述内存使用情况我们需要一些内存空间,这些空间叫做bootmem,此时bootm ap_pages表明了bootmem所需要的pages的数目 bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages); 后面会详细分析这个函 数,通过这个函数,bootmap_pfn设置了bootmem所在的初始页号。也就是说从bootmap_ pfn到bootmap_pfn + bootmap_pages的内存页被用来描述初始化的时候的内存的用用情 况 initrd_node = check_initrd(mi);//俺们的板子没有用,应该是检查ramdisk的节点情况 map_pg = bootmap_pfn; np += numnodes - 1; 初始化node结构 for (node = numnodes - 1; node >= 0; node--, np--) { if (np->end == 0) { if (node == 0) BUG(); continue; } init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end); 后面会详细 分析这个函数 free_bootmem_node_bank(node, mi);//释放所有内存,也就是把bootmem的区域全部 设置为0 map_pg += np->bootmap_pages; 我们有可能会保留一些内存以便使值不能被动态分配,具体要保留什么内容,后面会详 细分析 if (node == 0) reserve_node_zero(bootmap_pfn, bootmap_pages); } if (map_pg != bootmap_pfn + bootmap_pages) BUG(); }
paging_init 页表初始化 创建内核页表,映射所有物理内存和io空间, 对于不同的处理器,这个函数差别很大。这个函数里面东西比较多,改天抽个时间认真研究一下!
request_standard_resources 建立资源链表 内核映象所占用的物理页面不允许动态分配,内核代码段和数据段所占用空间不能分配。
parse_options 解析命令行参数中剩下的部分(跟parse_cmdline 相比较)主要是环境变量和要执行的第一个脚本linuxrc
trap_init 主要是对一些系统保留的中断向量的初始化,下面是entry-armv.S中向量表的初始化 .LCvectors: swi SYS_ERROR0 b __real_stubs_start + (vector_undefinstr - __stubs_start) ldr pc, __real_stubs_start + (.LCvswi - __stubs_start) b __real_stubs_start + (vector_prefetch - __stubs_start) b __real_stubs_start + (vector_data - __stubs_start) b __real_stubs_start + (vector_addrexcptn - __stubs_start) b __real_stubs_start + (vector_IRQ - __stubs_start) b __real_stubs_start + (vector_FIQ - __stubs_start)
init_IRQ 做与中断处理相关的初始化,将所有中断注册一个中断描述符。其中还要做dma的初始化。
浅析armlinux-setup_arch()->setup_arch()函数-最终
浅析armlinux-setup_arch()->setup_arch()函数-最终
文章来源:http://gliethttp.cublog.cn
建议首先参考《浅析armlinux2_4_19启动程序[head-armv.s文件]》与[http://gliethttp.cublog.cn]
《浅析setup_arch()函数tag_list的uboot[u-boot]由来》 《浅析armlinux-setup_arch()->setup_processor()函数1》 《浅析armlinux-setup_arch()->setup_machine()函数2 》 《浅析armlinux-setup_arch()->convert_to_tag_list()函数3 》 《浅析armlinux-setup_arch()->bootmem_init()函数4》 《浅析armlinux-setup_arch()->paging_init()函数5》 《浅析armlinux-seup_arch-alloc_bootmem_low_pages函数5-1》 《浅析armlinux-setup_arch()-memtable_init()函数5-2》 《浅析armlinux-setup_arch()-clear_mapping()函数5-2-1》 《浅析armlinux-setup_arch()-create_mapping()函数5-2-2》 《我看Buddy(伙伴)算法-为什么要有除2操作》 《浅析armlinux-paging_init()->at91rm9200_map_io()函数5-3》 《浅析armlinux-paging_init()->free_area_init_core()函数5-4》 《浅析armlinux-setup_arch()->request_standard_resources()函数6》 《浅析armlinux-setup_arch()->init_arch_irq()函数7》
//1.arch/arm/kernel/Setup.c->setup_arch() void __init setup_arch(char **cmdline_p) { struct tag *tags = (struct tag *)&init_tags; struct machine_desc *mdesc; char *from = default_command_line;
ROOT_DEV = MKDEV(0, 255);//ROOT_DEV = 0xff; //见《浅析armlinux-setup_arch()->setup_processor()函数1》[http://gliethttp.cublog.cn] setup_processor(); //见《浅析armlinux-setup_arch()->setup_machine(machine_arch_type)函数2》[http://gliethttp.cublog.cn] mdesc = setup_machine(machine_arch_type);//mdesc指向机器描述空间单元 //++++++++++++++ //arch/arm/mach-at91rm9200/Core.c //位于.arch.info段 //MACHINE_START(AT91RM9200, "ATMEL AT91RM9200")//.nr = MACH_TYPE_##_type=MACH_TYPE_AT91RM9200=251 //与上面从u-boot传到r1中的一样[gliethttp] //MAINTAINER("SAN People / ATMEL") //BOOT_MEM(AT91_SDRAM_BASE, AT91C_BASE_SYS, AT91C_VA_BASE_SYS) //BOOT_PARAMS(AT91_SDRAM_BASE + 0x100)//tag list存放的物理地址0x20000100[gliethttp] //FIXUP(at91rm9200_fixup) //MAPIO(at91rm9200_map_io) //INITIRQ(at91rm9200_init_irq) //MACHINE_END[gliethttp] //-------------- machine_name = mdesc->name;//machine_name="ATMEL AT91RM9200"
if (mdesc->soft_reboot)//mdesc->soft_reboot初值为1 reboot_setup("s");//分析见后
if (mdesc->param_offset)//mdesc->param_offset=AT91_SDRAM_BASE + 0x100=物理地址0x20000100 tags = phys_to_virt(mdesc->param_offset);//将tag list物理地址转换成虚拟地址,以便访问
if (mdesc->fixup)//调用at91rm9200_fixup()修正函数,分析见后 mdesc->fixup(mdesc, (struct param_struct *)tags, &from, &meminfo); //很明显由bootloader[u-boot-1.1.5]传递到物理地址0x20000100处的参数是tag list结构[gliethttp] if (tags->hdr.tag != ATAG_CORE) convert_to_tag_list(tags); //对于tag list的生成,请参考《浅析setup_arch()函数tag_list的uboot[u-boot]由来》[http://gliethttp.cublog.cn]
if (tags->hdr.tag == ATAG_CORE) { if (meminfo.nr_banks != 0)//如果是tag list,那么如果系统已经创建了默认的meminfo.nr_banks squash_mem_tags(tags);//那么使用squash_mem_tags失效所有ATAG_MEM初始化的东东为ATAG_NONE,tag->hdr.size不变 parse_tags(tags); }
if (meminfo.nr_banks == 0) {//如果tag list中没有传递ATAG_MEM参数,那么采用编译时的默认配置值 meminfo.nr_banks = 1; meminfo.bank[0].start = PHYS_OFFSET;//0x20000000 meminfo.bank[0].size = MEM_SIZE;//32M } //_text,_etext,_edata,_end参见arch/arm/vmlinux-armv.lds.in链接脚本 init_mm.start_code = (unsigned long) &_text; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end;
memcpy(saved_command_line, from, COMMAND_LINE_SIZE); saved_command_line[COMMAND_LINE_SIZE-1] = '\0';//追0,防止非法字符串越界 //parse_cmdline,主要完成phys_initrd_start,phys_initrd_size和mem的解析,并将*cmdline_p=command_line全局量 parse_cmdline(&meminfo, cmdline_p, from); //将kernel自身和位图管理页占用的页对应的页位图置1,标识相应页已被占用 //将initrd占用的页对应的页位图置1,标识相应页已被占用[gliethttp] bootmem_init(&meminfo); //清空页目录项,建立at91rm9200中断向量表空间和io寄存器空间从虚拟地址到物理地址的映射表 //建立map位图和page页管理空间,以及free_area.map位图管理空间等 paging_init(&meminfo, mdesc); request_standard_resources(&meminfo, mdesc);//登记注册所有需要登记注册的cpu总线上的设备实体 init_arch_irq = mdesc->init_irq;//中断初始化函数指针
#ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con;//显示设备指针conswitchp指向vga_con设备 #elif defined(CONFIG_DUMMY_CONSOLE)//frambuffer选中后,就会使用dummy_con设备 conswitchp = &dummy_con;//显示设备指针conswitchp指向dummy_con设备 #endif #endif } //2.arch/arm/kernel/Process.c->reboot_setup() static char reboot_mode = 'h'; int __init reboot_setup(char *str) { //reboot_mode将在machine_restart()系统重启时arch_reset()使用 reboot_mode = str[0];//reboot_mode='s'; return 1; } //3.arch/arm/mach-at91rm9200/Core.c->at91rm9200_fixup static void __init at91rm9200_fixup(struct machine_desc *desc, struct param_struct *unused, char **cmdline, struct meminfo *mi) { #ifdef CONFIG_BLK_DEV_INITRD//CONFIG_BLK_DEV_INITRD = 1
//设置根目录为ramdisk ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);//0x100 //由make menuconfig产生CONFIG_BLK_DEV_RAM_SIZE = 15360k = 15M setup_ramdisk(1, 0, 0, CONFIG_BLK_DEV_RAM_SIZE); // setup_initrd(0xc0100000, 3*1024*1024); #endif } void __init setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) { #ifdef CONFIG_BLK_DEV_RAM extern int rd_size, rd_image_start, rd_prompt, rd_doload; rd_image_start = image_start; rd_prompt = prompt; rd_doload = doload; if (rd_sz) rd_size = rd_sz;//15M #endif } //4.解析tag list中各个元素,进而改变内核全局量,来影响内核 //arch/arm/kernel/Setup.c->parse_tags() static void __init parse_tags(const struct tag *t) { for (; t->hdr.size; t = tag_next(t)) if (!parse_tag(t))//解析该t printk(KERN_WARNING "Ignoring unrecognised tag 0x%08x\n", t->hdr.tag); } //5.arch/arm/kernel/Setup.c->parse_tag() static int __init parse_tag(const struct tag *tag) { extern struct tagtable __tagtable_begin, __tagtable_end; struct tagtable *t; for (t = &__tagtable_begin; t < &__tagtable_end; t++) if (tag->hdr.tag == t->tag) { t->parse(tag); break; } return t < &__tagtable_end;//找到匹配项,1;否则0 } //arch/arm/vmlinux-armv.lds.in链接脚本中有如下定以 //... //__tagtable_begin = .; //*(.taglist) //__tagtable_end = .; //... //在include/asm-arm/Setup.h中有如下定义 #define __tag __attribute__((unused, __section__(".taglist"))) #define __tagtable(tag, fn) \ static struct tagtable __tagtable_##fn __tag = { tag, fn } __tagtable(ATAG_CORE, parse_tag_core);//ATAG_CORE解析函数parse_tag_core __tagtable(ATAG_MEM, parse_tag_mem32);//ATAG_MEM解析函数parse_tag_mem32 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);//ATAG_RAMDISK解析函数parse_tag_ramdisk __tagtable(ATAG_INITRD, parse_tag_initrd);//ATAG_INITRD解析函数parse_tag_initrd __tagtable(ATAG_SERIAL, parse_tag_serialnr);//ATAG_SERIAL解析函数parse_tag_serialnr __tagtable(ATAG_CMDLINE, parse_tag_cmdline);//ATAG_CMDLINE解析函数parse_tag_cmdline ......等
浅析armlinux-setup_arch()->bootmem_init()函数4
浅析armlinux-setup_arch()->bootmem_init()函数4
文章来源:http://gliethttp.cublog.cn
建议首先参考《浅析armlinux2_4_19启动程序[head-armv.s文件]》[http://gliethttp.cublog.cn]
//---------------------------------------- //1.arch/arm/mm/Init.c->bootmem_init() void __init bootmem_init(struct meminfo *mi) { struct node_info node_info[NR_NODES], *np = node_info; unsigned int bootmap_pages, bootmap_pfn, map_pg; int node, initrd_node; //计算为了管理所有mem内存,需管理位图占据页数目bootmap_pages,np中存储mem对应的页帧号 bootmap_pages = find_memend_and_nodes(mi, np); //查找存放位图管理页的物理页帧号,实际是存放到_end后的后续页中 bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages); //检查initrd的合法性,同时将initrd所在内存bank的node返回给initrd_node initrd_node = check_initrd(mi); map_pg = bootmap_pfn;//位图页帧号 np += numnodes - 1; for (node = numnodes - 1; node >= 0; node--, np--) { /* * If there are no pages in this node, ignore it. * Note that node 0 must always have some pages. */ if (np->end == 0) { if (node == 0) BUG(); continue; } //将map_pg开始的位图管理空间全部置0xff init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end); //释放虚拟地址node_bootmem_map开始的位图管理的所有页,使相应页可用[gliethttp] free_bootmem_node_bank(node, mi); map_pg += np->bootmap_pages; /* * If this is node 0, we need to reserve some areas ASAP - * we may use bootmem on node 0 to setup the other nodes. */ if (node == 0)//我的at91rm9200开发板仅仅有一个node=0 //将kernel自身和位图管理页占用的页对应的页位图置1,标识相应页已被占用 reserve_node_zero(bootmap_pfn, bootmap_pages); } #ifdef CONFIG_BLK_DEV_INITRD//在我的at91rm9200开发板中,initrd是开启的 //并且phys_initrd_start=0x21100000 //phys_initrd_size=6000000=0x5B8D80=5.73M //initrd_node=0; if (phys_initrd_size && initrd_node >= 0) { //将initrd占用的页对应的页位图置1,标识相应页已被占用 reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start, phys_initrd_size); initrd_start = __phys_to_virt(phys_initrd_start);//转成虚拟地址 initrd_end = initrd_start + phys_initrd_size; } #endif if (map_pg != bootmap_pfn + bootmap_pages)//保证所有bootmap都已经被遍历 BUG(); } //---------------------------------------- //2.arch/arm/mm/Init.c->find_memend_and_nodes() static unsigned int __init find_memend_and_nodes(struct meminfo *mi, struct node_info *np) {unsigned int i, bootmem_pages = 0, memend_pfn = 0; for (i = 0; i < NR_NODES; i++) {//默认失效 np[i].start = -1U; np[i].end = 0; np[i].bootmap_pages = 0; } for (i = 0; i < mi->nr_banks; i++) { unsigned long start, end; int node; if (mi->bank[i].size == 0) { mi->bank[i].node = -1;//该bank的node无效-1 continue; } node = mi->bank[i].node;//at91rm9200dk中mem连续node=0 if (node >= numnodes) { numnodes = node + 1; if (numnodes > NR_NODES) BUG(); } //获取当前bank的pfns //#define PAGE_ALIGN(addr) (((addr)+PAGE_SIZE-1)&PAGE_MASK)//页边界对齐 //define O_PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT) start = O_PFN_UP(mi->bank[i].start);//获取该bank.start对应物理页帧号 //同理,//获取该bank.end对应物理页帧号 end = O_PFN_DOWN(mi->bank[i].start + mi->bank[i].size); if (np[node].start > start) np[node].start = start;//存储 if (np[node].end < end) np[node].end = end;//存储 if (memend_pfn < end) memend_pfn = end; } for (i = 0; i < numnodes; i++) { if (np[i].end == 0) continue; //bootmem_bootmap_pages计算pages个页需要多少个页来存储其位图管理信息 np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end - np[i].start); bootmem_pages += np[i].bootmap_pages;//累计位图管理信息页总数 } /* * This doesn't seem to be used by the Linux memory * manager any more. If we can get rid of it, we * also get rid of some of the stuff above as well. */ max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); // max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); mi->end = memend_pfn << PAGE_SHIFT;//所管理的物理内存结束地址 return bootmem_pages; } //---------------------------------------- //3.mm/Bootmem.c->bootmem_bootmap_pages() //计算pages个页需要多少个页来存储其位图管理信息 unsigned long __init bootmem_bootmap_pages (unsigned long pages) {unsigned long mapsize; mapsize = (pages+7)/8;//所需8bits个数 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;//mapsize个字节页对齐 mapsize >>= PAGE_SHIFT;//mapsize个字节对应页数目 return mapsize; } //---------------------------------------- //4.arch/arm/mm/Init.c->find_bootmap_pfn() //查找存放位图管理页的物理页帧号-init_mm.brk static unsigned int __init find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) {unsigned int start_pfn, bank, bootmap_pfn; start_pfn = V_PFN_UP(&_end);//将_end虚拟内存转换为对应的物理页帧号 bootmap_pfn = 0; for (bank = 0; bank < mi->nr_banks; bank ++) { unsigned int start, end; if (mi->bank[bank].node != node) continue; start = O_PFN_UP(mi->bank[bank].start); end = O_PFN_DOWN(mi->bank[bank].size + mi->bank[bank].start); if (end < start_pfn) continue; if (start < start_pfn) start = start_pfn;//_end对应init_mm.brk临界点
if (end <= start) continue; if (end - start >= bootmap_pages) { bootmap_pfn = start;//从init_mm.brk开始存放位图管理页 break; } } if (bootmap_pfn == 0) BUG(); return bootmap_pfn;//ok[gliethttp] } //---------------------------------------- //5.arch/arm/mm/Init.c->check_initrd() //检查initrd的合法性 static int __init check_initrd(struct meminfo *mi) { int initrd_node = -2; unsigned long end = phys_initrd_start + phys_initrd_size; #ifdef CONFIG_BLK_DEV_INITRD /* * Make sure that the initrd is within a valid area of * memory. */ if (phys_initrd_size) { unsigned int i; initrd_node = -1; for (i = 0; i < mi->nr_banks; i++) { unsigned long bank_end; bank_end = mi->bank[i].start + mi->bank[i].size; if (mi->bank[i].start <= phys_initrd_start && end <= bank_end) initrd_node = mi->bank[i].node; } } if (initrd_node == -1) { printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " "physical memory - disabling initrd\n", phys_initrd_start, end); phys_initrd_start = phys_initrd_size = 0; } #endif return initrd_node;//将initrd所在内存bank对应的node返回 } //---------------------------------------- //6.mm/Bootmem.c->init_bootmem_node() unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) { return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn)); } //mm/Bootmem.c->init_bootmem_core() static unsigned long __init init_bootmem_core (pg_data_t *pgdat, unsigned long mapstart, unsigned long start, unsigned long end) { bootmem_data_t *bdata = pgdat->bdata;//读取&node_bootmem_data[0] unsigned long mapsize = ((end - start)+7)/8; pgdat->node_next = pgdat_list; pgdat_list = pgdat; mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL);//4字节对齐 bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);//位图页帧号转为系统用的虚拟地址 bdata->node_boot_start = (start << PAGE_SHIFT);//本map所处物理内存起始地址 bdata->node_low_pfn = end;//本map所处物理内存结束地址 //用0xff填充map位图页帧后,mapsize个字节数据 //arch/arm/lib/memset.S->memset(),对虚拟地址bdata->node_bootmem_map进行赋值 memset(bdata->node_bootmem_map, 0xff, mapsize); return mapsize; } //---------------------------------------- //7.mm/Bootmem.c->free_bootmem_node_bank() static inline void free_bootmem_node_bank(int node, struct meminfo *mi) { pg_data_t *pgdat = NODE_DATA(node);//读取&node_bootmem_data[0] int bank; for (bank = 0; bank < mi->nr_banks; bank++) if (mi->bank[bank].node == node) free_bootmem_node(pgdat, mi->bank[bank].start, mi->bank[bank].size); } void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) { return(free_bootmem_core(pgdat->bdata, physaddr, size)); } static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) { unsigned long i; unsigned long start; /* * round down end of usable mem, partially free pages are * considered reserved. */ unsigned long sidx; unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; unsigned long end = (addr + size)/PAGE_SIZE; if (!size) BUG(); if (end > bdata->node_low_pfn)//一般相等 BUG(); start = (addr + PAGE_SIZE-1) / PAGE_SIZE;//mem起始物理地址对应的页帧号 sidx = start - (bdata->node_boot_start/PAGE_SIZE);//起始大小 for (i = sidx; i < eidx; i++) {///sidx=0,eidx=size/PAGE_SIZE[gliethttp] //清0各位图管理位,使相应页可用 //如i=4,那么第4物理页可用,清0bdata->node_bootmem_map[0]的第4位 if (!test_and_clear_bit(i, bdata->node_bootmem_map))//node_bootmem_map位图管理起始虚拟地址 BUG(); } } ///arch/arm/lib/testclearbit.S->test_and_clear_bit() ENTRY(test_and_clear_bit) add r1, r1, r0, lsr #3//获取第r0位,对应字节对应的地址 and r3, r0, #7//获取字节中偏移 mov r0, #1 //include/asm-arm/proc-armv/Assembler.h->save_and_disable_irqs[gliethttp] //.macro save_and_disable_irqs, oldcpsr, temp //mrs \oldcpsr, cpsr// //mov \temp, #I_BIT | MODE_SVC //msr cpsr_c, \temp //.endm save_and_disable_irqs ip, r2//将cpsr保存到ip ldrb r2, [r1]//取出字节数据 tst r2, r0, lsl r3//先测一次,我感觉没用 bic r2, r2, r0, lsl r3//将r2的第r3位清0,成功清0后Z=0,因为硬件故障未能成功那么Z=1,返回后会halt系统 strb r2, [r1]//存储清0后的结果 restore_irqs ip//恢复cpsr moveq r0, #0//如果因为硬件故障导致不能清0,那么r0=0;清0失败 RETINSTR(mov,pc,lr) //---------------------------------------- //8.arch/arm/mm/Init.c->reserve_node_zero() //将kernel自身和位图管理页占用的页对应的页位图置1,标识相应页已被占用 static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages) { pg_data_t *pgdat = NODE_DATA(0);//获取node0的所有物理内存管理单元pgdat //对于_end和_stext,参考arch/arm/vmlinux-armv.lds.in链接脚本 //_end为init_mm.brk,是kernel最末端地址 //__pa(&_stext)物理地址开始的&_end - &_stext个数据,对应页位图置1标识相应页已被占用 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); #ifdef CONFIG_CPU_32 //将arch/arm/kernel/head-armv.s中4M保留页swapper_pg_dir,我的at91rm9200板子对应的物理地址为0x20004000~0x20008000 //swapper_pg_dir~swapper_pg_dir+4k*4的页对应的页位图置1标识相应页已被占用 //#define PTRS_PER_PGD 4096 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); #endif //将_end即init_mm.brk之后存放node物理页位图的位图管理空间也保护起来 //bootmap_pfn << PAGE_SHIFT~(bootmap_pfn << PAGE_SHIFT)+(bootmap_pages << PAGE_SHIFT)的页对应的页位图置1标识相应页已被占用 reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT, bootmap_pages << PAGE_SHIFT); //以下代码在at91rm9200dk下均不被编译进vmlinuz if (machine_is_integrator())//if(0),否则会因为reserve_bootmem_node回环,halt系统 reserve_bootmem_node(pgdat, 0, __pa(swapper_pg_dir)); if (machine_is_archimedes() || machine_is_a5k()) reserve_bootmem_node(pgdat, 0x02000000, 0x00080000); if (machine_is_edb7211() || machine_is_fortunet()) reserve_bootmem_node(pgdat, 0xc0000000, 0x00020000); if (machine_is_p720t()) reserve_bootmem_node(pgdat, PHYS_OFFSET, 0x00014000); #ifdef CONFIG_SA1111//非SA1111 reserve_bootmem_node(pgdat, PHYS_OFFSET, __pa(swapper_pg_dir)-PHYS_OFFSET); #endif } void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) {//使pgdat管理的物理内存,physaddr~(physaddr+size)之间的物理内存不可使用--占用保留 //physaddr~(physaddr+size)对应页位图置1标识相应页已被占用 reserve_bootmem_core(pgdat->bdata, physaddr, size); } static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) { unsigned long i; /* * round up, partially reserved pages are considered * fully reserved. */ //bdata->node_boot_start该bdata对应node物理内存的起始地址 unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;//计算addr所处页帧号 unsigned long eidx = (addr + size - bdata->node_boot_start + PAGE_SIZE-1)/PAGE_SIZE;//计算addr+size对应的页帧号 unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; if (!size) BUG(); if (sidx < 0) BUG(); if (eidx < 0) BUG(); if (sidx >= eidx)//数据回环 BUG(); //bdata->node_low_pfn为本node物理内存的地址上限 if ((addr >> PAGE_SHIFT) >= bdata->node_low_pfn) BUG(); if (end > bdata->node_low_pfn) BUG(); //条件符合,那么实行保护措施 //将sidx页到eidx页对应的位图置1,位图置1标识相应页已被占用(保护起来,不被kernel使用) for (i = sidx; i < eidx; i++) if (test_and_set_bit(i, bdata->node_bootmem_map)) printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); } ///arch/arm/lib/testclearbit.S->test_and_set_bit() //ENTRY(test_and_set_bit) // add r1, r1, r0, lsr #3//获取第r0位对应的字节地址 // and r3, r0, #7//计算处于字节的第几位 // mov r0, #1 // save_and_disable_irqs ip, r2//ip=cpsr // ldrb r2, [r1] // tst r2, r0, lsl r3 //orr操作,成功操作后Z=0,因为硬件故障未能成功那么Z=1,返回后会halt系统 // orr r2, r2, r0, lsl r3//将r2中的第r3位置1 // strb r2, [r1]//回写 // restore_irqs ip // moveq r0, #0 // RETINSTR(mov,pc,lr) //include/asm-arm/proc-armv/Assembler.h->save_and_disable_irqs[gliethttp] //.macro save_and_disable_irqs, oldcpsr, temp //mrs \oldcpsr, cpsr// //mov \temp, #I_BIT | MODE_SVC
浅析setup_arch()函数tag_list的uboot[u-boot]由来 浅析setup_arch()函数tag_list的uboot[u-boot]由来 文章来源:http://gliethttp.cublog.cn 1.linux中 //------------------------------------------------------ arch/arm/kernel/setup.c->setup_arch() void __init setup_arch(char **cmdline_p) { struct tag *tags = (struct tag *)&init_tags; struct machine_desc *mdesc; char *from = default_command_line; ROOT_DEV = MKDEV(0, 255); setup_processor(); mdesc = setup_machine(machine_arch_type); machine_name = mdesc->name; if (mdesc->soft_reboot) reboot_setup("s"); if (mdesc->param_offset) tags = phys_to_virt(mdesc->param_offset); //tags指向AT91_SDRAM_BASE + 0x100地址,该地址处的tag list由uboot生成 /* * Do the machine-specific fixups before we parse the * parameters or tags. */ if (mdesc->fixup) mdesc->fixup(mdesc, (struct param_struct *)tags, &from, &meminfo); /* * If we have the old style parameters, convert them to * a tag list. */ if (tags->hdr.tag != ATAG_CORE) //2007-07-05 gliethttp 非tag list需要转换;但是uboot传递的是tag list convert_to_tag_list(tags); if (tags->hdr.tag == ATAG_CORE) { if (meminfo.nr_banks != 0) //具体的解析 squash_mem_tags(tags); parse_tags(tags); } if (meminfo.nr_banks == 0) { meminfo.nr_banks = 1; meminfo.bank[0].start = PHYS_OFFSET; meminfo.bank[0].size = MEM_SIZE; } init_mm.start_code = (unsigned long) &_text; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = (unsigned long) &_edata; init_mm.brk = (unsigned long) &_end; memcpy(saved_command_line, from, COMMAND_LINE_SIZE); saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; parse_cmdline(&meminfo, cmdline_p, from); bootmem_init(&meminfo); paging_init(&meminfo, mdesc); request_standard_resources(&meminfo, mdesc); /* * Set up various architecture-specific pointers */ init_arch_irq = mdesc->init_irq; #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif } //------------------------------------------------------ arch/arm/vmlinux-armv.lds.in __arch_info_begin = .; *(.arch.info) __arch_info_end = .; //------------------------------------------------------ include/asm-arm/mach/Arch.h #define MACHINE_START(_type,_name) \ const struct machine_desc __mach_desc_##_type \ __attribute__((__section__(".arch.info"))) = { \ .nr = MACH_TYPE_##_type, \ .name = _name, #define MAINTAINER(n) #define BOOT_MEM(_pram,_pio,_vio) \ .phys_ram = _pram, \ .phys_io = _pio, \ .io_pg_offst = ((_vio)>>18)&0xfffc, #define BOOT_PARAMS(_params) \ .param_offset = _params, #define VIDEO(_start,_end) \ .video_start = _start, \ .video_end = _end, #define DISABLE_PARPORT(_n) \ .reserve_lp##_n = 1, #define BROKEN_HLT /* unused */ #define SOFT_REBOOT \ .soft_reboot = 1, #define FIXUP(_func) \ .fixup = _func, #define MAPIO(_func) \ .map_io = _func, #define INITIRQ(_func) \ .init_irq = _func, #define MACHINE_END \ }; //------------------------------------------------------ arch/arm/mach-at91rm9200/Core.c MACHINE_START(AT91RM9200, "ATMEL AT91RM9200") MAINTAINER("SAN People / ATMEL") BOOT_MEM(AT91_SDRAM_BASE, AT91C_BASE_SYS, AT91C_VA_BASE_SYS) BOOT_PARAMS(AT91_SDRAM_BASE + 0x100) FIXUP(at91rm9200_fixup) MAPIO(at91rm9200_map_io) INITIRQ(at91rm9200_init_irq) MACHINE_END //------------------------------------------------------ arch/arm/mach-at91rm9200/Core.c->at91rm9200_fixup() 将ramdisk设为根文档系统 static void __init at91rm9200_fixup(struct machine_desc *desc, struct param_struct *unused, char **cmdline, struct meminfo *mi) { #ifdef CONFIG_BLK_DEV_INITRD ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); setup_ramdisk(1, 0, 0, CONFIG_BLK_DEV_RAM_SIZE); // setup_initrd(0xc0100000, 3*1024*1024); #endif } 2.uboot中 //------------------------------------------------------ u-boot的include/asm-arm/setup.h定义了struct tag结构体 u-boot的lib_arm/armlinux.c->do_bootm_linux() ->setup_start_tag() ->setup_serial_tag() ->setup_revision_tag() ->setup_memory_tags() ->setup_commandline_tag() ->setup_initrd_tag() ->setup_videolfb_tag() ->setup_end_tag() //------------------------------------------------------ 其中u-boot的setup_start_tag会将bd->bi_boot_params传给params static void setup_start_tag (bd_t *bd) { params = (struct tag *) bd->bi_boot_params; params->hdr.tag = ATAG_CORE; params->hdr.size = tag_size (tag_core); params->u.core.flags = 0; params->u.core.pagesize = 0; params->u.core.rootdev = 0; params = tag_next (params); } 在board/at91rm9200dk/at91rm9200dk.c->board_init()函数中定义了bd->bi_boot_params的初始值gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;所以这就刚好和linux中arch/arm/mach-at91rm9200/Core.c的BOOT_PARAMS(AT91_SDRAM_BASE + 0x100)对应起来了。
|