posts - 36, comments - 30, trackbacks - 0, articles - 0

fastdelegate

Posted on 2008-05-30 11:41 vcommon 阅读(742) 评论(0)  编辑 收藏 引用

//      FastDelegate.h
// Efficient delegates in C++ that generate only two lines of asm code!
//  Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp
//
//      - Don Clugston, Mar 2004.
//  Major contributions were made by Jody Hagins.
// History:
// 24-Apr-04 1.0  * Submitted to CodeProject.
// 28-Apr-04 1.1  * Prevent most unsafe uses of evil static function hack.
//      * Improved syntax for horrible_cast (thanks Paul Bludov).
//      * Tested on Metrowerks MWCC and Intel ICL (IA32)
//      * Compiled, but not run, on Comeau C++ and Intel Itanium ICL.
// 27-Jun-04 1.2 * Now works on Borland C++ Builder 5.5
//      * Now works on /clr "managed C++" code on VC7, VC7.1
//      * Comeau C++ now compiles without warnings.
//      * Prevent the virtual inheritance case from being used on
//       VC6 and earlier, which generate incorrect code.
//      * Improved warning and error messages. Non-standard hacks
//      now have compile-time checks to make them safer.
//      * implicit_cast used instead of static_cast in many cases.
//      * If calling a const member function, a const class pointer can be used.
//      * MakeDelegate() global helper function added to simplify pass-by-value.
//      * Added fastdelegate.clear()
// 16-Jul-04 1.2.1* Workaround for gcc bug (const member function pointers in templates)
// 30-Oct-04 1.3  * Support for (non-void) return values.
//      * No more workarounds in client code!
//      MSVC and Intel now use a clever hack invented by John Dlugosz:
//         - The FASTDELEGATEDECLARE workaround is no longer necessary.
//      - No more warning messages for VC6
//      * Less use of macros. Error messages should be more comprehensible.
//      * Added include guards
//      * Added FastDelegate::empty() to test if invocation is safe (Thanks Neville Franks).
//      * Now tested on VS 2005 Express Beta, PGI C++
// 24-Dec-04 1.4  * Added DelegateMemento, to allow collections of disparate delegates.
//                * <,>,<=,>= comparison operators to allow storage in ordered containers.
//      * Substantial reduction of code size, especially the 'Closure' class.
//      * Standardised all the compiler-specific workarounds.
//                * MFP conversion now works for CodePlay (but not yet supported in the full code).
//                * Now compiles without warnings on _any_ supported compiler, including BCC 5.5.1
//      * New syntax: FastDelegate< int (char *, double) >.
// 14-Feb-05 1.4.1* Now treats =0 as equivalent to .clear(), ==0 as equivalent to .empty(). (Thanks elfric).
//      * Now tested on Intel ICL for AMD64, VS2005 Beta for AMD64 and Itanium.
// 30-Mar-05 1.5  * Safebool idiom: "if (dg)" is now equivalent to "if (!dg.empty())"
//      * Fully supported by CodePlay VectorC
//                * Bugfix for Metrowerks: empty() was buggy because a valid MFP can be 0 on MWCC!
//                * More optimal assignment,== and != operators for static function pointers.

#ifndef FASTDELEGATE_H
#define FASTDELEGATE_H
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <memory.h> // to allow <,> comparisons

////////////////////////////////////////////////////////////////////////////////
//      Configuration options
//
////////////////////////////////////////////////////////////////////////////////

// Uncomment the following #define for optimally-sized delegates.
// In this case, the generated asm code is almost identical to the code you'd get
// if the compiler had native support for delegates.
// It will not work on systems where sizeof(dataptr) < sizeof(codeptr).
// Thus, it will not work for DOS compilers using the medium model.
// It will also probably fail on some DSP systems.
#define FASTDELEGATE_USESTATICFUNCTIONHACK

// Uncomment the next line to allow function declarator syntax.
// It is automatically enabled for those compilers where it is known to work.
//#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

////////////////////////////////////////////////////////////////////////////////
//      Compiler identification for workarounds
//
////////////////////////////////////////////////////////////////////////////////

// Compiler identification. It's not easy to identify Visual C++ because
// many vendors fraudulently define Microsoft's identifiers.
#if defined(_MSC_VER) && !defined(__MWERKS__) && !defined(__VECTOR_C) && !defined(__ICL) && !defined(__BORLANDC__)
#define FASTDLGT_ISMSVC

#if (_MSC_VER <1300) // Many workarounds are required for VC6.
#define FASTDLGT_VC6
#pragma warning(disable:4786) // disable this ridiculous warning
#endif

#endif

// Does the compiler uses Microsoft's member function pointer structure?
// If so, it needs special treatment.
// Metrowerks CodeWarrior, Intel, and CodePlay fraudulently define Microsoft's
// identifier, _MSC_VER. We need to filter Metrowerks out.
#if defined(_MSC_VER) && !defined(__MWERKS__)
#define FASTDLGT_MICROSOFT_MFP

#if !defined(__VECTOR_C)
// CodePlay doesn't have the __single/multi/virtual_inheritance keywords
#define FASTDLGT_HASINHERITANCE_KEYWORDS
#endif
#endif

// Does it allow function declarator syntax? The following compilers are known to work:
#if defined(FASTDLGT_ISMSVC) && (_MSC_VER >=1310) // VC 7.1
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

// Gcc(2.95+), and versions of Digital Mars, Intel and Comeau in common use.
#if defined (__DMC__) || defined(__GNUC__) || defined(__ICL) || defined(__COMO__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

// It works on Metrowerks MWCC 3.2.2. From boost.Config it should work on earlier ones too.
#if defined (__MWERKS__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

#ifdef __GNUC__ // Workaround GCC bug #8271
 // At present, GCC doesn't recognize constness of MFPs in templates
#define FASTDELEGATE_GCC_BUG_8271
#endif

 

////////////////////////////////////////////////////////////////////////////////
//      General tricks used in this code
//
// (a) Error messages are generated by typdefing an array of negative size to
//     generate compile-time errors.
// (b) Warning messages on MSVC are generated by declaring unused variables, and
//     enabling the "variable XXX is never used" warning.
// (c) Unions are used in a few compiler-specific cases to perform illegal casts.
// (d) For Microsoft and Intel, when adjusting the 'this' pointer, it's cast to
//     (char *) first to ensure that the correct number of *bytes* are added.
//
////////////////////////////////////////////////////////////////////////////////
//      Helper templates
//
////////////////////////////////////////////////////////////////////////////////


namespace fastdelegate {
namespace detail { // we'll hide the implementation details in a nested namespace.

//  implicit_cast< >
// I believe this was originally going to be in the C++ standard but
// was left out by accident. It's even milder than static_cast.
// I use it instead of static_cast<> to emphasize that I'm not doing
// anything nasty.
// Usage is identical to static_cast<>
template <class OutputClass, class InputClass>
inline OutputClass implicit_cast(InputClass input){
 return input;
}

//  horrible_cast< >
// This is truly evil. It completely subverts C++'s type system, allowing you
// to cast from any class to any other class. Technically, using a union
// to perform the cast is undefined behaviour (even in C). But we can see if
// it is OK by checking that the union is the same size as each of its members.
// horrible_cast<> should only be used for compiler-specific workarounds.
// Usage is identical to reinterpret_cast<>.

// This union is declared outside the horrible_cast because BCC 5.5.1
// can't inline a function with a nested class, and gives a warning.
template <class OutputClass, class InputClass>
union horrible_union{
 OutputClass out;
 InputClass in;
};

template <class OutputClass, class InputClass>
inline OutputClass horrible_cast(const InputClass input){
 horrible_union<OutputClass, InputClass> u;
 // Cause a compile-time error if in, out and u are not the same size.
 // If the compile fails here, it means the compiler has peculiar
 // unions which would prevent the cast from working.
 typedef int ERROR_CantUseHorrible_cast[sizeof(InputClass)==sizeof(u)
  && sizeof(InputClass)==sizeof(OutputClass) ? 1 : -1];
 u.in = input;
 return u.out;
}

////////////////////////////////////////////////////////////////////////////////
//      Workarounds
//
////////////////////////////////////////////////////////////////////////////////

// Backwards compatibility: This macro used to be necessary in the virtual inheritance
// case for Intel and Microsoft. Now it just forward-declares the class.
#define FASTDELEGATEDECLARE(CLASSNAME) class CLASSNAME;

// Prevent use of the static function hack with the DOS medium model.
#ifdef __MEDIUM__
#undef FASTDELEGATE_USESTATICFUNCTIONHACK
#endif

//   DefaultVoid - a workaround for 'void' templates in VC6.
//
//  (1) VC6 and earlier do not allow 'void' as a default template argument.
//  (2) They also doesn't allow you to return 'void' from a function.
//
// Workaround for (1): Declare a dummy type 'DefaultVoid' which we use
//   when we'd like to use 'void'. We convert it into 'void' and back
//   using the templates DefaultVoidToVoid<> and VoidToDefaultVoid<>.
// Workaround for (2): On VC6, the code for calling a void function is
//   identical to the code for calling a non-void function in which the
//   return value is never used, provided the return value is returned
//   in the EAX register, rather than on the stack.
//   This is true for most fundamental types such as int, enum, void *.
//   Const void * is the safest option since it doesn't participate
//   in any automatic conversions. But on a 16-bit compiler it might
//   cause extra code to be generated, so we disable it for all compilers
//   except for VC6 (and VC5).
#ifdef FASTDLGT_VC6
// VC6 workaround
typedef const void * DefaultVoid;
#else
// On any other compiler, just use a normal void.
typedef void DefaultVoid;
#endif

// Translate from 'DefaultVoid' to 'void'.
// Everything else is unchanged
template <class T>
struct DefaultVoidToVoid { typedef T type; };

template <>
struct DefaultVoidToVoid<DefaultVoid> { typedef void type; };

// Translate from 'void' into 'DefaultVoid'
// Everything else is unchanged
template <class T>
struct VoidToDefaultVoid { typedef T type; };

template <>
struct VoidToDefaultVoid<void> { typedef DefaultVoid type; };

 

////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 1:
//
//  Conversion of member function pointer to a standard form
//
////////////////////////////////////////////////////////////////////////////////

// GenericClass is a fake class, ONLY used to provide a type.
// It is vitally important that it is never defined, so that the compiler doesn't
// think it can optimize the invocation. For example, Borland generates simpler
// code if it knows the class only uses single inheritance.

// Compilers using Microsoft's structure need to be treated as a special case.
#ifdef  FASTDLGT_MICROSOFT_MFP

#ifdef FASTDLGT_HASINHERITANCE_KEYWORDS
 // For Microsoft and Intel, we want to ensure that it's the most efficient type of MFP
 // (4 bytes), even when the /vmg option is used. Declaring an empty class
 // would give 16 byte pointers in this case....
 class __single_inheritance GenericClass;
#endif
 // ...but for Codeplay, an empty class *always* gives 4 byte pointers.
 // If compiled with the /clr option ("managed C++"), the JIT compiler thinks
 // it needs to load GenericClass before it can call any of its functions,
 // (compiles OK but crashes at runtime!), so we need to declare an
 // empty class to make it happy.
 // Codeplay and VC4 can't cope with the unknown_inheritance case either.
 class GenericClass {};
#else
 class GenericClass;
#endif

// The size of a single inheritance member function pointer.
const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (GenericClass::*)());

//      SimplifyMemFunc< >::Convert()
//
// A template function that converts an arbitrary member function pointer into the
// simplest possible form of member function pointer, using a supplied 'this' pointer.
//  According to the standard, this can be done legally with reinterpret_cast<>.
// For (non-standard) compilers which use member function pointers which vary in size
//  depending on the class, we need to use knowledge of the internal structure of a
//  member function pointer, as used by the compiler. Template specialization is used
//  to distinguish between the sizes. Because some compilers don't support partial
// template specialisation, I use full specialisation of a wrapper struct.

// general case -- don't know how to convert it. Force a compile failure
template <int N>
struct SimplifyMemFunc {
 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
  GenericMemFuncType &bound_func) {
  // Unsupported member function type -- force a compile failure.
     // (it's illegal to have a array with negative size).
  typedef char ERROR_Unsupported_member_function_pointer_on_this_compiler[N-100];
  return 0;
 }
};

// For compilers where all member func ptrs are the same size, everything goes here.
// For non-standard compilers, only single_inheritance classes go here.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE>  { 
 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
   GenericMemFuncType &bound_func) {
#if defined __DMC__ 
  // Digital Mars doesn't allow you to cast between abitrary PMF's,
  // even though the standard says you can. The 32-bit compiler lets you
  // static_cast through an int, but the DOS compiler doesn't.
  bound_func = horrible_cast<GenericMemFuncType>(function_to_bind);
#else
        bound_func = reinterpret_cast<GenericMemFuncType>(function_to_bind);
#endif
        return reinterpret_cast<GenericClass *>(pthis);
 }
};

////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 1b:
//
//     Workarounds for Microsoft and Intel
//
////////////////////////////////////////////////////////////////////////////////


// Compilers with member function pointers which violate the standard (MSVC, Intel, Codeplay),
// need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP

// We use unions to perform horrible_casts. I would like to use #pragma pack(push, 1)
// at the start of each function for extra safety, but VC6 seems to ICE
// intermittently if you do this inside a template.

// __multiple_inheritance classes go here
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
template<>
struct SimplifyMemFunc< SINGLE_MEMFUNCPTR_SIZE + sizeof(int) >  {
 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
  GenericMemFuncType &bound_func) {
  // We need to use a horrible_cast to do this conversion.
  // In MSVC, a multiple inheritance member pointer is internally defined as:
        union {
   XFuncType func;
   struct { 
    GenericMemFuncType funcaddress; // points to the actual member function
    int delta;      // #BYTES to be added to the 'this' pointer
   }s;
        } u;
  // Check that the horrible_cast will work
  typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s)? 1 : -1];
        u.func = function_to_bind;
  bound_func = u.s.funcaddress;
  return reinterpret_cast<GenericClass *>(reinterpret_cast<char *>(pthis) + u.s.delta);
 }
};

// virtual inheritance is a real nuisance. It's inefficient and complicated.
// On MSVC and Intel, there isn't enough information in the pointer itself to
// enable conversion to a closure pointer. Earlier versions of this code didn't
// work for all cases, and generated a compile-time error instead.
// But a very clever hack invented by John M. Dlugosz solves this problem.
// My code is somewhat different to his: I have no asm code, and I make no
// assumptions about the calling convention that is used.

// In VC++ and ICL, a virtual_inheritance member pointer
// is internally defined as:
struct MicrosoftVirtualMFP {
 void (GenericClass::*codeptr)(); // points to the actual member function
 int delta;  // #bytes to be added to the 'this' pointer
 int vtable_index; // or 0 if no virtual inheritance
};
// The CRUCIAL feature of Microsoft/Intel MFPs which we exploit is that the
// m_codeptr member is *always* called, regardless of the values of the other
// members. (This is *not* true for other compilers, eg GCC, which obtain the
// function address from the vtable if a virtual function is being called).
// Dlugosz's trick is to make the codeptr point to a probe function which
// returns the 'this' pointer that was used.

// Define a generic class that uses virtual inheritance.
// It has a trival member function that returns the value of the 'this' pointer.
struct GenericVirtualClass : virtual public GenericClass
{
 typedef GenericVirtualClass * (GenericVirtualClass::*ProbePtrType)();
 GenericVirtualClass * GetThis() { return this; }
};

// __virtual_inheritance classes go here
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 2*sizeof(int) >
{

 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
  GenericMemFuncType &bound_func) {
  union {
   XFuncType func;
   GenericClass* (X::*ProbeFunc)();
   MicrosoftVirtualMFP s;
  } u;
  u.func = function_to_bind;
  bound_func = reinterpret_cast<GenericMemFuncType>(u.s.codeptr);
  union {
   GenericVirtualClass::ProbePtrType virtfunc;
   MicrosoftVirtualMFP s;
  } u2;
  // Check that the horrible_cast<>s will work
  typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s)
   && sizeof(function_to_bind)==sizeof(u.ProbeFunc)
   && sizeof(u2.virtfunc)==sizeof(u2.s) ? 1 : -1];
   // Unfortunately, taking the address of a MF prevents it from being inlined, so
   // this next line can't be completely optimised away by the compiler.
  u2.virtfunc = &GenericVirtualClass::GetThis;
  u.s.codeptr = u2.s.codeptr;
  return (pthis->*u.ProbeFunc)();
 }
};

#if (_MSC_VER <1300)

// Nasty hack for Microsoft Visual C++ 6.0
// unknown_inheritance classes go here
// There is a compiler bug in MSVC6 which generates incorrect code in this case!!
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3*sizeof(int) >
{
 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
  GenericMemFuncType &bound_func) {
  // There is an apalling but obscure compiler bug in MSVC6 and earlier:
  // vtable_index and 'vtordisp' are always set to 0 in the
  // unknown_inheritance case!
  // This means that an incorrect function could be called!!!
  // Compiling with the /vmg option leads to potentially incorrect code.
  // This is probably the reason that the IDE has a user interface for specifying
  // the /vmg option, but it is disabled -  you can only specify /vmg on
  // the command line. In VC1.5 and earlier, the compiler would ICE if it ever
  // encountered this situation.
  // It is OK to use the /vmg option if /vmm or /vms is specified.

  // Fortunately, the wrong function is only called in very obscure cases.
  // It only occurs when a derived class overrides a virtual function declared
  // in a virtual base class, and the member function
  // points to the *Derived* version of that function. The problem can be
  // completely averted in 100% of cases by using the *Base class* for the
  // member fpointer. Ie, if you use the base class as an interface, you'll
  // stay out of trouble.
  // Occasionally, you might want to point directly to a derived class function
  // that isn't an override of a base class. In this case, both vtable_index
  // and 'vtordisp' are zero, but a virtual_inheritance pointer will be generated.
  // We can generate correct code in this case. To prevent an incorrect call from
  // ever being made, on MSVC6 we generate a warning, and call a function to
  // make the program crash instantly.
  typedef char ERROR_VC6CompilerBug[-100];
  return 0;
 }
};


#else

// Nasty hack for Microsoft and Intel (IA32 and Itanium)
// unknown_inheritance classes go here
// This is probably the ugliest bit of code I've ever written. Look at the casts!
// There is a compiler bug in MSVC6 which prevents it from using this code.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3*sizeof(int) >
{
 template <class X, class XFuncType, class GenericMemFuncType>
 inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
   GenericMemFuncType &bound_func) {
  // The member function pointer is 16 bytes long. We can't use a normal cast, but
  // we can use a union to do the conversion.
  union {
   XFuncType func;
   // In VC++ and ICL, an unknown_inheritance member pointer
   // is internally defined as:
   struct {
    GenericMemFuncType m_funcaddress; // points to the actual member function
    int delta;  // #bytes to be added to the 'this' pointer
    int vtordisp;  // #bytes to add to 'this' to find the vtable
    int vtable_index; // or 0 if no virtual inheritance
   } s;
  } u;
  // Check that the horrible_cast will work
  typedef int ERROR_CantUsehorrible_cast[sizeof(XFuncType)==sizeof(u.s)? 1 : -1];
  u.func = function_to_bind;
  bound_func = u.s.funcaddress;
  int virtual_delta = 0;
  if (u.s.vtable_index) { // Virtual inheritance is used
   // First, get to the vtable.
   // It is 'vtordisp' bytes from the start of the class.
   const int * vtable = *reinterpret_cast<const int *const*>(
    reinterpret_cast<const char *>(pthis) + u.s.vtordisp );

   // 'vtable_index' tells us where in the table we should be looking.
   virtual_delta = u.s.vtordisp + *reinterpret_cast<const int *>(
    reinterpret_cast<const char *>(vtable) + u.s.vtable_index);
  }
  // The int at 'virtual_delta' gives us the amount to add to 'this'.
        // Finally we can add the three components together. Phew!
        return reinterpret_cast<GenericClass *>(
   reinterpret_cast<char *>(pthis) + u.s.delta + virtual_delta);
 };
};
#endif // MSVC 7 and greater

#endif // MS/Intel hacks

}  // namespace detail

////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 2:
//
// Define the delegate storage, and cope with static functions
//
////////////////////////////////////////////////////////////////////////////////

// DelegateMemento -- an opaque structure which can hold an arbitary delegate.
// It knows nothing about the calling convention or number of arguments used by
// the function pointed to.
// It supplies comparison operators so that it can be stored in STL collections.
// It cannot be set to anything other than null, nor invoked directly:
//   it must be converted to a specific delegate.

// Implementation:
// There are two possible implementations: the Safe method and the Evil method.
//    DelegateMemento - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// A static function pointer is stored inside the class.
// Here are the valid values:
// +-- Static pointer --+--pThis --+-- pMemFunc-+-- Meaning------+
// |   0    |  0       |   0        | Empty          |
// |   !=0              |(dontcare)|  Invoker   | Static function|
// |   0                |  !=0     |  !=0*      | Method call    |
// +--------------------+----------+------------+----------------+
//  * For Metrowerks, this can be 0. (first virtual function in a
//       single_inheritance class).
// When stored stored inside a specific delegate, the 'dontcare' entries are replaced
// with a reference to the delegate itself. This complicates the = and == operators
// for the delegate class.

//    DelegateMemento - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is
// possible to store the function pointer in the this pointer, using another
// horrible_cast. In this case the DelegateMemento implementation is simple:
// +--pThis --+-- pMemFunc-+-- Meaning---------------------+
// |    0     |  0         | Empty                         |
// |  !=0     |  !=0*      | Static function or method call|
// +----------+------------+-------------------------------+
//  * For Metrowerks, this can be 0. (first virtual function in a
//       single_inheritance class).
// Note that the Sun C++ and MSVC documentation explicitly state that they
// support static_cast between void * and function pointers.

class DelegateMemento {
protected:
 // the data is protected, not private, because many
 // compilers have problems with template friends.
 typedef void (detail::GenericClass::*GenericMemFuncType)(); // arbitrary MFP.
 detail::GenericClass *m_pthis;
 GenericMemFuncType m_pFunction;

#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
 typedef void (*GenericFuncPtr)(); // arbitrary code pointer
 GenericFuncPtr m_pStaticFunction;
#endif

public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
 DelegateMemento() : m_pthis(0), m_pFunction(0), m_pStaticFunction(0) {};
 void clear() {
  m_pthis=0; m_pFunction=0; m_pStaticFunction=0;
 }
#else
 DelegateMemento() : m_pthis(0), m_pFunction(0) {};
 void clear() { m_pthis=0; m_pFunction=0; }
#endif
public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
 inline bool IsEqual (const DelegateMemento &x) const{
     // We have to cope with the static function pointers as a special case
  if (m_pFunction!=x.m_pFunction) return false;
  // the static function ptrs must either both be equal, or both be 0.
  if (m_pStaticFunction!=x.m_pStaticFunction) return false;
  if (m_pStaticFunction!=0) return m_pthis==x.m_pthis;
  else return true;
 }
#else // Evil Method
 inline bool IsEqual (const DelegateMemento &x) const{
  return m_pthis==x.m_pthis && m_pFunction==x.m_pFunction;
 }
#endif
 // Provide a strict weak ordering for DelegateMementos.
 inline bool IsLess(const DelegateMemento &right) const {
  // deal with static function pointers first
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  if (m_pStaticFunction !=0 || right.m_pStaticFunction!=0)
    return m_pStaticFunction < right.m_pStaticFunction;
#endif
  if (m_pthis !=right.m_pthis) return m_pthis < right.m_pthis;
 // There are no ordering operators for member function pointers,
 // but we can fake one by comparing each byte. The resulting ordering is
 // arbitrary (and compiler-dependent), but it permits storage in ordered STL containers.
  return memcmp(&m_pFunction, &right.m_pFunction, sizeof(m_pFunction)) < 0;

 }
 // BUGFIX (Mar 2005):
 // We can't just compare m_pFunction because on Metrowerks,
 // m_pFunction can be zero even if the delegate is not empty!
 inline bool operator ! () const  // Is it bound to anything?
 { return m_pthis==0 && m_pFunction==0; }
 inline bool empty() const  // Is it bound to anything?
 { return m_pthis==0 && m_pFunction==0; }
public:
 DelegateMemento & operator = (const DelegateMemento &right)  {
  SetMementoFrom(right);
  return *this;
 }
 inline bool operator <(const DelegateMemento &right) {
  return IsLess(right);
 }
 inline bool operator >(const DelegateMemento &right) {
  return right.IsLess(*this);
 }
 DelegateMemento (const DelegateMemento &right)  :
  m_pFunction(right.m_pFunction), m_pthis(right.m_pthis)
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  , m_pStaticFunction (right.m_pStaticFunction)
#endif
  {}
protected:
 void SetMementoFrom(const DelegateMemento &right)  {
  m_pFunction = right.m_pFunction;
  m_pthis = right.m_pthis;
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  m_pStaticFunction = right.m_pStaticFunction;
#endif
 }
};


//      ClosurePtr<>
//
// A private wrapper class that adds function signatures to DelegateMemento.
// It's the class that does most of the actual work.
// The signatures are specified by:
// GenericMemFunc: must be a type of GenericClass member function pointer.
// StaticFuncPtr:  must be a type of function pointer with the same signature
//                 as GenericMemFunc.
// UnvoidStaticFuncPtr: is the same as StaticFuncPtr, except on VC6
//                 where it never returns void (returns DefaultVoid instead).

// An outer class, FastDelegateN<>, handles the invoking and creates the
// necessary typedefs.
// This class does everything else.

namespace detail {

template < class GenericMemFunc, class StaticFuncPtr, class UnvoidStaticFuncPtr>
class ClosurePtr : public DelegateMemento {
public:
 // These functions are for setting the delegate to a member function.

 // Here's the clever bit: we convert an arbitrary member function into a
 // standard form. XMemFunc should be a member function of class X, but I can't
 // enforce that here. It needs to be enforced by the wrapper class.
 template < class X, class XMemFunc >
 inline void bindmemfunc(X *pthis, XMemFunc function_to_bind ) {
  m_pthis = SimplifyMemFunc< sizeof(function_to_bind) >
   ::Convert(pthis, function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  m_pStaticFunction = 0;
#endif
 }
 // For const member functions, we only need a const class pointer.
 // Since we know that the member function is const, it's safe to
 // remove the const qualifier from the 'this' pointer with a const_cast.
 // VC6 has problems if we just overload 'bindmemfunc', so we give it a different name.
 template < class X, class XMemFunc>
 inline void bindconstmemfunc(const X *pthis, XMemFunc function_to_bind) {
  m_pthis= SimplifyMemFunc< sizeof(function_to_bind) >
   ::Convert(const_cast<X*>(pthis), function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  m_pStaticFunction = 0;
#endif
 }
#ifdef FASTDELEGATE_GCC_BUG_8271 // At present, GCC doesn't recognize constness of MFPs in templates
 template < class X, class XMemFunc>
 inline void bindmemfunc(const X *pthis, XMemFunc function_to_bind) {
  bindconstmemfunc(pthis, function_to_bind);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
  m_pStaticFunction = 0;
#endif
 }
#endif
 // These functions are required for invoking the stored function
 inline GenericClass *GetClosureThis() const { return m_pthis; }
 inline GenericMemFunc GetClosureMemPtr() const { return reinterpret_cast<GenericMemFunc>(m_pFunction); }

// There are a few ways of dealing with static function pointers.
// There's a standard-compliant, but tricky method.
// There's also a straightforward hack, that won't work on DOS compilers using the
// medium memory model. It's so evil that I can't recommend it, but I've
// implemented it anyway because it produces very nice asm code.

#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)

//    ClosurePtr<> - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// I store the function pointer inside the class, and the delegate then
// points to itself. Whenever the delegate is copied, these self-references
// must be transformed, and this complicates the = and == operators.
public:
 // The next two functions are for operator ==, =, and the copy constructor.
 // We may need to convert the m_pthis pointers, so that
 // they remain as self-references.
 template< class DerivedClass >
 inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &x) {
  SetMementoFrom(x);
  if (m_pStaticFunction!=0) {
   // transform self references...
   m_pthis=reinterpret_cast<GenericClass *>(pParent);
  }
 }
 // For static functions, the 'static_function_invoker' class in the parent
 // will be called. The parent then needs to call GetStaticFunction() to find out
 // the actual function to invoke.
 template < class DerivedClass, class ParentInvokerSig >
 inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker,
    StaticFuncPtr function_to_bind ) {
  if (function_to_bind==0) { // cope with assignment to 0
   m_pFunction=0;
  } else {
   bindmemfunc(pParent, static_function_invoker);
        }
  m_pStaticFunction=reinterpret_cast<GenericFuncPtr>(function_to_bind);
 }
 inline UnvoidStaticFuncPtr GetStaticFunction() const {
  return reinterpret_cast<UnvoidStaticFuncPtr>(m_pStaticFunction);
 }
#else

//    ClosurePtr<> - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is
// possible to store the function pointer in the this pointer, using another
// horrible_cast. Invocation isn't any faster, but it saves 4 bytes, and
// speeds up comparison and assignment. If C++ provided direct language support
// for delegates, they would produce asm code that was almost identical to this.
// Note that the Sun C++ and MSVC documentation explicitly state that they
// support static_cast between void * and function pointers.

 template< class DerivedClass >
 inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &right) {
  SetMementoFrom(right);
 }
 // For static functions, the 'static_function_invoker' class in the parent
 // will be called. The parent then needs to call GetStaticFunction() to find out
 // the actual function to invoke.
 // ******** EVIL, EVIL CODE! *******
 template <  class DerivedClass, class ParentInvokerSig>
 inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker,
    StaticFuncPtr function_to_bind) {
  if (function_to_bind==0) { // cope with assignment to 0
   m_pFunction=0;
  } else {
     // We'll be ignoring the 'this' pointer, but we need to make sure we pass
     // a valid value to bindmemfunc().
   bindmemfunc(pParent, static_function_invoker);
        }

  // WARNING! Evil hack. We store the function in the 'this' pointer!
  // Ensure that there's a compilation failure if function pointers
  // and data pointers have different sizes.
  // If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
  typedef int ERROR_CantUseEvilMethod[sizeof(GenericClass *)==sizeof(function_to_bind) ? 1 : -1];
  m_pthis = horrible_cast<GenericClass *>(function_to_bind);
  // MSVC, SunC++ and DMC accept the following (non-standard) code:
//  m_pthis = static_cast<GenericClass *>(static_cast<void *>(function_to_bind));
  // BCC32, Comeau and DMC accept this method. MSVC7.1 needs __int64 instead of long
//  m_pthis = reinterpret_cast<GenericClass *>(reinterpret_cast<long>(function_to_bind));
 }
 // ******** EVIL, EVIL CODE! *******
 // This function will be called with an invalid 'this' pointer!!
 // We're just returning the 'this' pointer, converted into
 // a function pointer!
 inline UnvoidStaticFuncPtr GetStaticFunction() const {
  // Ensure that there's a compilation failure if function pointers
  // and data pointers have different sizes.
  // If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
  typedef int ERROR_CantUseEvilMethod[sizeof(UnvoidStaticFuncPtr)==sizeof(this) ? 1 : -1];
  return horrible_cast<UnvoidStaticFuncPtr>(this);
 }
#endif // !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)

 // Does the closure contain this static function?
 inline bool IsEqualToStaticFuncPtr(StaticFuncPtr funcptr){
  if (funcptr==0) return empty();
 // For the Evil method, if it doesn't actually contain a static function, this will return an arbitrary
 // value that is not equal to any valid function pointer.
  else return funcptr==reinterpret_cast<StaticFuncPtr>(GetStaticFunction());
 }
};


} // namespace detail

////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 3:
//
//    Wrapper classes to ensure type safety
//
////////////////////////////////////////////////////////////////////////////////


// Once we have the member function conversion templates, it's easy to make the
// wrapper classes. So that they will work with as many compilers as possible,
// the classes are of the form
//   FastDelegate3<int, char *, double>
// They can cope with any combination of parameters. The max number of parameters
// allowed is 8, but it is trivial to increase this limit.
// Note that we need to treat const member functions seperately.
// All this class does is to enforce type safety, and invoke the delegate with
// the correct list of parameters.

// Because of the weird rule about the class of derived member function pointers,
// you sometimes need to apply a downcast to the 'this' pointer.
// This is the reason for the use of "implicit_cast<X*>(pthis)" in the code below.
// If CDerivedClass is derived from CBaseClass, but doesn't override SimpleVirtualFunction,
// without this trick you'd need to write:
//  MyDelegate(static_cast<CBaseClass *>(&d), &CDerivedClass::SimpleVirtualFunction);
// but with the trick you can write
//  MyDelegate(&d, &CDerivedClass::SimpleVirtualFunction);

// RetType is the type the compiler uses in compiling the template. For VC6,
// it cannot be void. DesiredRetType is the real type which is returned from
// all of the functions. It can be void.

// Implicit conversion to "bool" is achieved using the safe_bool idiom,
// using member data pointers (MDP). This allows "if (dg)..." syntax
// Because some compilers (eg codeplay) don't have a unique value for a zero
// MDP, an extra padding member is added to the SafeBool struct.
// Some compilers (eg VC6) won't implicitly convert from 0 to an MDP, so
// in that case the static function constructor is not made explicit; this
// allows "if (dg==0) ..." to compile.

//N=0
template<class RetType=detail::DefaultVoid>
class FastDelegate0 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)();
 typedef RetType (*UnvoidStaticFunctionPtr)();
 typedef RetType (detail::GenericClass::*GenericMemFn)();
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate0 type;

 // Construction and comparison functions
 FastDelegate0() { clear(); }
 FastDelegate0(const FastDelegate0 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate0 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate0 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate0 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate0 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate0 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate0(Y *pthis, DesiredRetType (X::* function_to_bind)() ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)()) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate0(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate0(DesiredRetType (*function_to_bind)() ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)() ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)()) {
  m_Closure.bindstaticfunc(this, &FastDelegate0::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() () const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction() const {
 return (*(m_Closure.GetStaticFunction()))(); }
};

//N=1
template<class Param1, class RetType=detail::DefaultVoid>
class FastDelegate1 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate1 type;

 // Construction and comparison functions
 FastDelegate1() { clear(); }
 FastDelegate1(const FastDelegate1 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate1 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate1 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate1 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate1 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate1 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate1(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate1(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate1(DesiredRetType (*function_to_bind)(Param1 p1) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1)) {
  m_Closure.bindstaticfunc(this, &FastDelegate1::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1) const {
 return (*(m_Closure.GetStaticFunction()))(p1); }
};

//N=2
template<class Param1, class Param2, class RetType=detail::DefaultVoid>
class FastDelegate2 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate2 type;

 // Construction and comparison functions
 FastDelegate2() { clear(); }
 FastDelegate2(const FastDelegate2 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate2 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate2 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate2 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate2 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate2 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate2(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate2(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate2(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) {
  m_Closure.bindstaticfunc(this, &FastDelegate2::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2); }
};

//N=3
template<class Param1, class Param2, class Param3, class RetType=detail::DefaultVoid>
class FastDelegate3 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate3 type;

 // Construction and comparison functions
 FastDelegate3() { clear(); }
 FastDelegate3(const FastDelegate3 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate3 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate3 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate3 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate3 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate3 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate3(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate3(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate3(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) {
  m_Closure.bindstaticfunc(this, &FastDelegate3::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3); }
};

//N=4
template<class Param1, class Param2, class Param3, class Param4, class RetType=detail::DefaultVoid>
class FastDelegate4 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate4 type;

 // Construction and comparison functions
 FastDelegate4() { clear(); }
 FastDelegate4(const FastDelegate4 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate4 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate4 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate4 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate4 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate4 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate4(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate4(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate4(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
  m_Closure.bindstaticfunc(this, &FastDelegate4::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4); }
};

//N=5
template<class Param1, class Param2, class Param3, class Param4, class Param5, class RetType=detail::DefaultVoid>
class FastDelegate5 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate5 type;

 // Construction and comparison functions
 FastDelegate5() { clear(); }
 FastDelegate5(const FastDelegate5 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate5 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate5 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate5 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate5 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate5 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate5(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate5(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate5(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) {
  m_Closure.bindstaticfunc(this, &FastDelegate5::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5); }
};

//N=6
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType=detail::DefaultVoid>
class FastDelegate6 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate6 type;

 // Construction and comparison functions
 FastDelegate6() { clear(); }
 FastDelegate6(const FastDelegate6 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate6 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate6 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate6 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate6 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate6 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate6(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate6(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate6(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) {
  m_Closure.bindstaticfunc(this, &FastDelegate6::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6); }
};

//N=7
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType=detail::DefaultVoid>
class FastDelegate7 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate7 type;

 // Construction and comparison functions
 FastDelegate7() { clear(); }
 FastDelegate7(const FastDelegate7 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate7 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate7 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate7 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate7 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate7 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate7(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate7(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate7(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) {
  m_Closure.bindstaticfunc(this, &FastDelegate7::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7); }
};

//N=8
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType=detail::DefaultVoid>
class FastDelegate8 {
private:
 typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
 typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
 typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
 typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
 typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
 ClosureType m_Closure;
public:
 // Typedefs to aid generic programming
 typedef FastDelegate8 type;

 // Construction and comparison functions
 FastDelegate8() { clear(); }
 FastDelegate8(const FastDelegate8 &x) {
  m_Closure.CopyFrom(this, x.m_Closure); }
 void operator = (const FastDelegate8 &x)  {
  m_Closure.CopyFrom(this, x.m_Closure); }
 bool operator ==(const FastDelegate8 &x) const {
  return m_Closure.IsEqual(x.m_Closure); }
 bool operator !=(const FastDelegate8 &x) const {
  return !m_Closure.IsEqual(x.m_Closure); }
 bool operator <(const FastDelegate8 &x) const {
  return m_Closure.IsLess(x.m_Closure); }
 bool operator >(const FastDelegate8 &x) const {
  return x.m_Closure.IsLess(m_Closure); }
 // Binding to non-const member functions
 template < class X, class Y >
 FastDelegate8(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
  m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
 // Binding to const member functions.
 template < class X, class Y >
 FastDelegate8(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); }
 template < class X, class Y >
 inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) {
  m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); }
 // Static functions. We convert them into a member function call.
 // This constructor also provides implicit conversion
 FastDelegate8(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
  bind(function_to_bind); }
 // for efficiency, prevent creation of a temporary
 void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
  bind(function_to_bind); }
 inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
  m_Closure.bindstaticfunc(this, &FastDelegate8::InvokeStaticFunction,
   function_to_bind); }
 // Invoke the delegate
 RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const {
 return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7, p8); }
 // Implicit conversion to "bool" using the safe_bool idiom
private:
 typedef struct SafeBoolStruct {
  int a_data_pointer_to_this_is_0_on_buggy_compilers;
  StaticFunctionPtr m_nonzero;
 } UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
 operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
 // necessary to allow ==0 to work despite the safe_bool idiom
 inline bool operator==(StaticFunctionPtr funcptr) {
  return m_Closure.IsEqualToStaticFuncPtr(funcptr); }
 inline bool operator!=(StaticFunctionPtr funcptr) {
  return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
 inline bool operator ! () const { // Is it bound to anything?
   return !m_Closure; }
 inline bool empty() const {
   return !m_Closure; }
 void clear() { m_Closure.clear();}
 // Conversion to and from the DelegateMemento storage class
 const DelegateMemento & GetMemento() { return m_Closure; }
 void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private: // Invoker for static functions
 RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const {
 return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7, p8); }
};


////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 4:
//
//    FastDelegate<> class (Original author: Jody Hagins)
// Allows boost::function style syntax like:
//   FastDelegate< double (int, long) >
// instead of:
//   FastDelegate2< int, long, double >
//
////////////////////////////////////////////////////////////////////////////////

#ifdef FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

// Declare FastDelegate as a class template.  It will be specialized
// later for all number of arguments.
template <typename Signature>
class FastDelegate;

//N=0
// Specialization to allow use of
// FastDelegate< R (  ) >
// instead of
// FastDelegate0 < R >
template<typename R>
class FastDelegate< R (  ) >
  // Inherit from FastDelegate0 so that it can be treated just like a FastDelegate0
  : public FastDelegate0 < R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate0 < R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)(  ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)(  ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)(  ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=1
// Specialization to allow use of
// FastDelegate< R ( Param1 ) >
// instead of
// FastDelegate1 < Param1, R >
template<typename R, class Param1>
class FastDelegate< R ( Param1 ) >
  // Inherit from FastDelegate1 so that it can be treated just like a FastDelegate1
  : public FastDelegate1 < Param1, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate1 < Param1, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=2
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2 ) >
// instead of
// FastDelegate2 < Param1, Param2, R >
template<typename R, class Param1, class Param2>
class FastDelegate< R ( Param1, Param2 ) >
  // Inherit from FastDelegate2 so that it can be treated just like a FastDelegate2
  : public FastDelegate2 < Param1, Param2, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate2 < Param1, Param2, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=3
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3 ) >
// instead of
// FastDelegate3 < Param1, Param2, Param3, R >
template<typename R, class Param1, class Param2, class Param3>
class FastDelegate< R ( Param1, Param2, Param3 ) >
  // Inherit from FastDelegate3 so that it can be treated just like a FastDelegate3
  : public FastDelegate3 < Param1, Param2, Param3, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate3 < Param1, Param2, Param3, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=4
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4 ) >
// instead of
// FastDelegate4 < Param1, Param2, Param3, Param4, R >
template<typename R, class Param1, class Param2, class Param3, class Param4>
class FastDelegate< R ( Param1, Param2, Param3, Param4 ) >
  // Inherit from FastDelegate4 so that it can be treated just like a FastDelegate4
  : public FastDelegate4 < Param1, Param2, Param3, Param4, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate4 < Param1, Param2, Param3, Param4, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=5
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
// instead of
// FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
  // Inherit from FastDelegate5 so that it can be treated just like a FastDelegate5
  : public FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=6
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
// instead of
// FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
  // Inherit from FastDelegate6 so that it can be treated just like a FastDelegate6
  : public FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=7
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
// instead of
// FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
  // Inherit from FastDelegate7 so that it can be treated just like a FastDelegate7
  : public FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};

//N=8
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >
// instead of
// FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >
  // Inherit from FastDelegate8 so that it can be treated just like a FastDelegate8
  : public FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis,
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {  
  *static_cast<BaseType*>(this) = x; }
};


#endif //FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

////////////////////////////////////////////////////////////////////////////////
//      Fast Delegates, part 5:
//
//    MakeDelegate() helper function
//
//   MakeDelegate(&x, &X::func) returns a fastdelegate of the type
//   necessary for calling x.func() with the correct number of arguments.
//   This makes it possible to eliminate many typedefs from user code.
//
////////////////////////////////////////////////////////////////////////////////

// Also declare overloads of a MakeDelegate() global function to
// reduce the need for typedefs.
// We need seperate overloads for const and non-const member functions.
// Also, because of the weird rule about the class of derived member function pointers,
// implicit downcasts may need to be applied later to the 'this' pointer.
// That's why two classes (X and Y) appear in the definitions. Y must be implicitly
// castable to X.

// Workaround for VC6. VC6 needs void return types converted into DefaultVoid.
// GCC 3.2 and later won't compile this unless it's preceded by 'typename',
// but VC6 doesn't allow 'typename' in this context.
// So, I have to use a macro.

#ifdef FASTDLGT_VC6
#define FASTDLGT_RETTYPE detail::VoidToDefaultVoid<RetType>::type
#else
#define FASTDLGT_RETTYPE RetType
#endif

//N=0
template <class X, class Y, class RetType>
FastDelegate0<FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)()) {
 return FastDelegate0<FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class RetType>
FastDelegate0<FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)() const) {
 return FastDelegate0<FASTDLGT_RETTYPE>(x, func);
}

//N=1
template <class X, class Y, class Param1, class RetType>
FastDelegate1<Param1, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1)) {
 return FastDelegate1<Param1, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class RetType>
FastDelegate1<Param1, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1) const) {
 return FastDelegate1<Param1, FASTDLGT_RETTYPE>(x, func);
}

//N=2
template <class X, class Y, class Param1, class Param2, class RetType>
FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2)) {
 return FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class RetType>
FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2) const) {
 return FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE>(x, func);
}

//N=3
template <class X, class Y, class Param1, class Param2, class Param3, class RetType>
FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3)) {
 return FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class RetType>
FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3) const) {
 return FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE>(x, func);
}

//N=4
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType>
FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
 return FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType>
FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
 return FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE>(x, func);
}

//N=5
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType>
FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) {
 return FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType>
FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) {
 return FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE>(x, func);
}

//N=6
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType>
FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) {
 return FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType>
FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) {
 return FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE>(x, func);
}

//N=7
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType>
FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) {
 return FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType>
FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) {
 return FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE>(x, func);
}

//N=8
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType>
FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
 return FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType>
FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) {
 return FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE>(x, func);
}


 // clean up after ourselves...
#undef FASTDLGT_RETTYPE

} // namespace fastdelegate

#endif // !defined(FASTDELEGATE_H)

//      FastDelegateBind.h
//  Helper file for FastDelegates. Provides bind() function, enabling
//  FastDelegates to be rapidly compared to programs using boost::function and boost::bind.
//
//  Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp
//
//  Original author: Jody Hagins.
//   Minor changes by Don Clugston.
//
// Warning: The arguments to 'bind' are ignored! No actual binding is performed.
// The behaviour is equivalent to boost::bind only when the basic placeholder
// arguments _1, _2, _3, etc are used in order.
//
// HISTORY:
// 1.4 Dec 2004. Initial release as part of FastDelegate 1.4.


#ifndef FASTDELEGATEBIND_H
#define FASTDELEGATEBIND_H
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

////////////////////////////////////////////////////////////////////////////////
//      FastDelegate bind()
//
//    bind() helper function for boost compatibility.
//    (Original author: Jody Hagins).
//
// Add another helper, so FastDelegate can be a dropin replacement
// for boost::bind (in a fair number of cases).
// Note the elipses, because boost::bind() takes place holders
// but FastDelegate does not care about them.  Getting the place holder
// mechanism to work, and play well with boost is a bit tricky, so
// we do the "easy" thing...
// Assume we have the following code...
//      using boost::bind;
//      bind(&Foo:func, &foo, _1, _2);
// we should be able to replace the "using" with...
//      using fastdelegate::bind;
// and everything should work fine...
////////////////////////////////////////////////////////////////////////////////

#ifdef FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

namespace fastdelegate {

//N=0
template <class X, class Y, class RetType>
FastDelegate< RetType (  ) >
bind(
    RetType (X::*func)(  ),
    Y * y,
    ...)
{
  return FastDelegate< RetType (  ) >(y, func);
}

template <class X, class Y, class RetType>
FastDelegate< RetType (  ) >
bind(
    RetType (X::*func)(  ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType (  ) >(y, func);
}

//N=1
template <class X, class Y, class RetType, class Param1>
FastDelegate< RetType ( Param1 p1 ) >
bind(
    RetType (X::*func)( Param1 p1 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1>
FastDelegate< RetType ( Param1 p1 ) >
bind(
    RetType (X::*func)( Param1 p1 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1 ) >(y, func);
}

//N=2
template <class X, class Y, class RetType, class Param1, class Param2>
FastDelegate< RetType ( Param1 p1, Param2 p2 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2>
FastDelegate< RetType ( Param1 p1, Param2 p2 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2 ) >(y, func);
}

//N=3
template <class X, class Y, class RetType, class Param1, class Param2, class Param3>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3 ) >(y, func);
}

//N=4
template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) >(y, func);
}

//N=5
template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) >(y, func);
}

//N=6
template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) >(y, func);
}

//N=7
template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) >(y, func);
}

//N=8
template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ),
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) >(y, func);
}

template <class X, class Y, class RetType, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8>
FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) >
bind(
    RetType (X::*func)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) const,
    Y * y,
    ...)
{
  return FastDelegate< RetType ( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) >(y, func);
}


#endif //FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

} // namespace fastdelegate

#endif // !defined(FASTDELEGATEBIND_H)

#include <stdio.h>
#include "FastDelegate.h"
// Demonstrate the syntax for FastDelegates.
//    -Don Clugston, May 2004.
// It's a really boring example, but it shows the most important cases.

// Declare some functions of varying complexity...
void SimpleStaticFunction(int num, char *str) {
 printf("In SimpleStaticFunction. Num=%d, str = %s\n", num, str);
}

void SimpleVoidFunction() {
 printf("In SimpleVoidFunction with no parameters.\n");
}

class CBaseClass {
protected:
 char *m_name;
public:
 CBaseClass(char *name) : m_name(name) {};
 void SimpleMemberFunction(int num, char *str) {
  printf("In SimpleMemberFunction in %s. Num=%d, str = %s\n", m_name, num, str); }
 int SimpleMemberFunctionReturnsInt(int num, char *str) {
  printf("In SimpleMemberFunction in %s. Num=%d, str = %s\n", m_name, num, str); return -1; }
 void ConstMemberFunction(int num, char *str) const {
  printf("In ConstMemberFunction in %s. Num=%d, str = %s\n", m_name, num, str); }
 virtual void SimpleVirtualFunction(int num, char *str) {
  printf("In SimpleVirtualFunction in %s. Num=%d, str = %s\n", m_name, num, str); }
 static void StaticMemberFunction(int num, char *str) {
  printf("In StaticMemberFunction. Num=%d, str =%s\n", num, str); }
};

class COtherClass {
 double rubbish; // to ensure this class has non-zero size.
public:
 virtual void UnusedVirtualFunction(void) { }
 virtual void TrickyVirtualFunction(int num, char *str)=0;
};

class VeryBigClass {
 int letsMakeThingsComplicated[400];
};

// This declaration ensures that we get a convoluted class heirarchy.
class CDerivedClass : public VeryBigClass, virtual public COtherClass, virtual public CBaseClass
{
 double m_somemember[8];
public:
 CDerivedClass() : CBaseClass("Base of Derived") { m_somemember[0]=1.2345; }
 void SimpleDerivedFunction(int num, char *str) { printf("In SimpleDerived. num=%d\n", num); }
 virtual void AnotherUnusedVirtualFunction(int num, char *str) {}
 virtual void TrickyVirtualFunction(int num, char *str) {
  printf("In Derived TrickyMemberFunction. Num=%d, str = %s\n", num, str);
 }
};

using namespace fastdelegate;

int main(void)
{
 // Delegates with up to 8 parameters are supported.
 // Here's the case for a void function.
 // We declare a delegate and attach it to SimpleVoidFunction()
 printf("-- FastDelegate demo --\nA no-parameter delegate is declared using FastDelegate0\n\n");

 FastDelegate0<> noparameterdelegate(&SimpleVoidFunction);

 noparameterdelegate(); // invoke the delegate - this calls SimpleVoidFunction()

 printf("\n-- Examples using two-parameter delegates (int, char *) --\n\n");

    // By default, the return value is void.
    typedef FastDelegate2<int, char *> MyDelegate;

 // If you want to have a non-void return value, put it at the end.
    typedef FastDelegate2<int, char *, int> IntMyDelegate;


 MyDelegate funclist[12]; // delegates are initialized to empty
 CBaseClass a("Base A");
 CBaseClass b("Base B");
 CDerivedClass d;
 CDerivedClass c;

 IntMyDelegate newdeleg;
    newdeleg = MakeDelegate(&a, &CBaseClass::SimpleMemberFunctionReturnsInt);
   
 // Binding a simple member function
        funclist[0].bind(&a, &CBaseClass::SimpleMemberFunction);
  
 // You can also bind static (free) functions
        funclist[1].bind(&SimpleStaticFunction);
 // and static member functions
        funclist[2].bind(&CBaseClass::StaticMemberFunction);
 // and const member functions (these only need a const class pointer).  
        funclist[11].bind( (const CBaseClass *)&a, &CBaseClass::ConstMemberFunction);
        funclist[3].bind( &a, &CBaseClass::ConstMemberFunction);
 // and virtual member functions
        funclist[4].bind(&b, &CBaseClass::SimpleVirtualFunction);

 // You can also use the = operator. For static functions, a fastdelegate
 // looks identical to a simple function pointer.
        funclist[5] = &CBaseClass::StaticMemberFunction;

 // The weird rule about the class of derived member function pointers is avoided.
 // For MSVC, you can use &CDerivedClass::SimpleVirtualFunction here, but DMC will complain.
 // Note that as well as .bind(), you can also use the MakeDelegate()
 // global function.
        funclist[6] = MakeDelegate(&d, &CBaseClass::SimpleVirtualFunction);

 // The worst case is an abstract virtual function of a virtually-derived class
 // with at least one non-virtual base class. This is a VERY obscure situation,
 // which you're unlikely to encounter in the real world.
 // FastDelegate versions prior to 1.3 had problems with this case on VC6.
 // Now, it works without problems on all compilers.
       funclist[7].bind(&c, &CDerivedClass::TrickyVirtualFunction);
 // BUT... in such cases you should be using the base class as an
 // interface, anyway.
       funclist[8].bind(&c, &COtherClass::TrickyVirtualFunction);
 // Calling a function that was first declared in the derived class is straightforward
        funclist[9] = MakeDelegate(&c, &CDerivedClass::SimpleDerivedFunction);

 // You can also bind directly using the constructor
        MyDelegate dg(&b, &CBaseClass::SimpleVirtualFunction);

 char *msg = "Looking for equal delegate";
 for (int i=0; i<12; i++) {
  printf("%d :", i);
  // The == and != operators are provided
  // Note that they work even for inline functions.
  if (funclist[i]==dg) { msg = "Found equal delegate"; };
  // operator ! can be used to test for an empty delegate
  // You can also use the .empty() member function.
  if (!funclist[i]) {
   printf("Delegate is empty\n");
  } else {
   // Invocation generates optimal assembly code.
   funclist[i](i, msg);
  };
 }
 return 0;
}

 

只有注册用户登录后才能发表评论。