#!/bin/sh
#
# What to do with this USB hotplug event?
#
case $ACTION in
add)
#echo $ACTION>/dev/tts/0
DIR="/dev/ub"
for I in "$DIR/"*;do
#echo $I>/dev/tts/0
if [ -d $I -a -e $I/part1 ];then
#echo "found&mount $I/part1">/dev/tts/0
mount -t vfat $I/part1 /mnt 2>/dev/tts/0
else
#echo "$I/part1 not found">/dev/tts/0
sleep 1;
if [ -d $I -a -e $I/part1 ];then
#echo "found&mount $I/part1">/dev/tts/0
mount -t vfat $I/part1 /mnt 2>/dev/tts/0
fi
fi
done
;;
remove)
#echo $ACTION>/dev/tts/0
#echo "umount /mnt">/dev/tts/0
umount /mnt 2>/dev/tts/0
;;
*)
exit 1
;;
esac
后记:
这脚本太简单了,建议使用usbautomount^_^。
posted @
2007-09-19 14:13 lfc 阅读(969) |
评论 (0) |
编辑 收藏
下面研究一下系统总线地址(cpu_addr)、宽度(bus_width)与nor flash设备总线地址(device_addr)、位度(device_width)的区别与联系:
一、对于nor flash设备来说
1、nor flash设备的位宽视芯片厂商而定,有x8、x16两总方式(虽然现在主要使用x16的方式,不过内核于启动代码里面仍然保留着对x8和x16两种方式的支持);把多片nor flash并起来使用可以扩大位宽(比如两片x8的nor flash并起来使用位宽扩大为x16)。
2、nor flash设备的总线地址(寻址)范围视具体芯片以及其采用的位宽而定:
以富士通的29LV650为例:
(29LV650的容量是8Mbyte,共128个sector,每个sector的大小是64 kbyte)
1)如果选择位宽为x8,设备总线的每个地址代表了一个byte的存储单元,固其总线地址范围为8M(0x000000~0x7fffff);
2)如果选择位宽为x16,设备总线的每个地址代表了两个byte的存储单元,固其总线地址范围为4M(0x000000~0x3fffff);
再来看看intel的E29F128:
(E29F128的容量为16Mbyte,共128个sector,每个sector的大小是128Kbyte)
1)如果选择位宽为x8,设备总线的每个地址代表了一个byte的存储单元,固其总线地址范围为16M(0x000000~0xffffff);
2)如果选择位宽为x16,情况和富士通的29LV650不同,这时候设备的A0脚不可用,所以你不能访问到奇地址的存储单元,而只能0、2、4...地址的来访问,其总线地址范围为8M(0x000000~0xffffff的偶地址)
二、对于系统来说
以S3C2410为例,cpu总线宽度是32位,可以通过8、16、32位的总线宽度来访问nor flash设备,视设备的位宽和是否并起来使用而定:
注:
buswidth=device_width*interleave:
然而,在cpu的眼里,每一个地址代表1byte的存储单元,不像nor flash设备那样,还有byte、word之分。
三、好了,了解了系统总线地址、宽度与nor flash设备总线地址、位宽后的区别后,
现在讨论一下cpu与nor flash的接法问题(通过举例来说明):
1、对于富士通的29LV650
1)选择x8方式,cpu的A0~A22接nor flash的A0~A22
2)选择x16方式,cpu的A1~A22接nor flash的A0~A21
注意:
cpu的A1接nor flash的A0,cpu只能访问偶地址,cpu的一次操作访问了2byte大小的存储单元。
2、对于intel的E29F128
1)选择x8方式,cpu的A0~A23接nor flash的A0~A23
2)选择x16方式,由于这时候地址线A0不再有效(这点与富士通的29LV650不同),
intel E29F128的A1等价于富士通的29LV650的A0,所以系统总线A1~A23接nor flash的A1~A23
四、在cpu对nor flash寻址方面
1、对于富士通的29LV650
1)在x8模式,系统总线和nor flash总线一一对应,直接访问
2)在x16模式,nor flash的对外总线缩小一半,一个地址可寻址的存储单元由原来的1 byte变为1 word(1 sector的地址范围由原来的1<<16变为1<<15),所以我们对其进行寻址的时候,需要把所要寻址的存储单元地址>>1位
注意:
我这里说的是以byte为单位的存储单元地址
由于系统总线的A1接nor flash的A0,固系统总线地址等于nor flash总线地址<<1位
注意:
我这里说的是nor flash的总线地址,对于x8方式以byte为单位,对于x16方式以word为单位
2、对于intel的E29F128
1)在x8模式,系统总线和nor flash总线一一对应,直接访问
2)在x16模式,nor flash总线的A0不再使用,有效的总线为A1~A23,所以我们对其寻址的时候,不必像富士通的29LV650那样需要把所要访问的存储单元地址>>1位(因为A0不再有效,等于奇地址自动被忽略,只有偶地址起作用)
同样:
由于nor flash总线的A0不起作用,系统总线的A1接nor flash的A1,所以我们只要直接给出存储单元的地址即可,不比对其进行<<1位操作(不过由于设备总线A0不起作用,所以系统只能访问到偶地址的存储单元,奇地址将会被忽略)
后记:
看了以上对系统总线和nor flash总线的介绍后,是否觉得很难理解?不过不要紧,因为我们访问nor flash存储单元的时候,其实我们只需要操作系统总线就行,至于系统总线是如何转化成nor flash所需要的总线地址,这个由cpu与nor flash的硬件接法帮你解决,是硬件工程师的事情。
呵呵,这样想的话,是否清晰很多了^_^
posted @
2007-09-17 08:41 lfc 阅读(1409) |
评论 (0) |
编辑 收藏
摘要: 上一个贴由下到上的介绍了FLASH硬件驱动是如何与MTD原始设备建立联系的,现在再由上到下的研究一下是如何通过MTD原始设备来访问FLASH硬件驱动的。首先分析一下如何通过MTD原始设备进而通过FLASH硬件驱动来读取FLASH存储器的数据。引用自<<Linux系统移植>>一文:"读Nand Flash:当对nand flash的设备文件(nand flash在/dev下对...
阅读全文
posted @
2007-09-04 16:18 lfc 阅读(9690) |
评论 (1) |
编辑 收藏
摘要: 看了<<Linux MTD源代码分析>>后对以MTD的分层结构以及各层的分工情况有了大致的了解,然而各层之间是如何进行对话的呢,对于这个问题,<<Linux MTD源代码分析>>上没有详细的去说明。小弟抽空研究了一下,打算从下到上,在从上到下,分两条主线来研究一下MTD原始设备与FLASH硬件驱动的对话(MTD原始设备与更上层的对话留待以后再研究)。...
阅读全文
posted @
2007-08-31 11:51 lfc 阅读(15360) |
评论 (5) |
编辑 收藏
上文介绍了input_dev
、input_handle、input_handler三者是如何联系起来了,现在继续介绍如何通过它们来传递信息。
在开始之前还是先引用一位大侠的帖子:
引:
现在看用户获取触摸屏输入的一个流程(以tsdev为例/drivers/input/tsdev.c):
static struct file_operations tsdev_fops = {
.owner = THIS_MODULE,
.open = tsdev_open,
.release = tsdev_release,
.read = tsdev_read,
.poll = tsdev_poll,
.fasync = tsdev_fasync,
.ioctl = tsdev_ioctl,
};
假设所有初始化早已完成,用户open该设备后,使用read系统调用进入内核,系统
转移控制到tsdev_read,使用wait_event_interruptible等待事件。
此时驱动层得到用户输入,于是调用input_report_abs,input_report_abs只是
input_event的简单包装:
static inline void input_report_abs(struct input_dev *dev,
unsigned int code, int value)
{
input_event(dev, EV_ABS, code, value);
}
void input_event(struct input_dev *dev, unsigned int type,
unsigned int code, int value)
{
...
switch (type) {
...
case EV_ABS:
...
break;
...
}
...
if (dev->grab)
dev->grab->handler->event(dev->grab, type, code, value);
else
list_for_each_entry(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle, type, code, value);
}
前面的处理关系具体设备,见最后对handler函数的调用,就是从input_dev的h_list链
上的input_handle获得每一个相关input_handler,并调用其中的event函数,对tsdev
来说:
static struct input_handler tsdev_handler = {
.event = tsdev_event,
.connect = tsdev_connect,
.disconnect = tsdev_disconnect,
.fops = &tsdev_fops,
.minor = TSDEV_MINOR_BASE,
.name = "tsdev",
.id_table = tsdev_ids,
};
即调用tsdev_event函数,接着看:
static void tsdev_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
...
switch (type) {
case EV_ABS:
break;
...
list_for_each_entry(list, &tsdev->list, node) {
int x, y, tmp;
do_gettimeofday(&time);
list->event[list->head].millisecs = time.tv_usec / 100;
list->event[list->head].pressure = tsdev->pressure;
x = tsdev->x;
y = tsdev->y;
/* Calibration */
if (!list->raw) {
x = ((x * tsdev->cal.xscale) >> 8) + tsdev->cal.xtrans;
y = ((y * tsdev->cal.yscale) >> 8) + tsdev->cal.ytrans;
if (tsdev->cal.xyswap) {
tmp = x; x = y; y = tmp;
}
}
list->event[list->head].x = x;
list->event[list->head].y = y;
list->head = (list->head + 1) & (TSDEV_BUFFER_SIZE - 1);
kill_fasync(&list->fasync, SIGIO, POLL_IN);
}
wake_up_interruptible(&tsdev->wait);
}
它填充数据,并唤醒等待着的请求。于是前面等待着的read请求就可继续了,
回到tsdev_read中,copy_to_user拷贝数据,最后返回用户层。
一个简单流程就结束了。
注: 原文请看以下网址:http://bbs.ustc.edu.cn/cgi/bbstcon?board=Kernel&file=M.1179398612.A看了以上的内容,相信你对2.6内核的输入子系统的消息传递过程应该有个大概的了解了,现在我就如何通过input_dev
、input_handle、input_handler这三者传递信息进行详细的分析:
################
从<tsdev.c>开始
################
static ssize_t tsdev_read(struct file *file, char __user *buffer, size_t count,
loff_t * ppos)
{
struct tsdev_list *list = file->private_data;
int retval = 0;
/* 设备存在(exist=1:在tsdev_connect函数里设置),但缓冲中无数据,而又配置为非阻塞读取方式,直接返回 */
if (list->head == list->tail && list->tsdev->exist && (file->f_flags & O_NONBLOCK))
return -EAGAIN;
/* 否则睡眠等待数据都来临 */
retval = wait_event_interruptible(list->tsdev->wait,
list->head != list->tail || !list->tsdev->exist);
/* 被信号中断唤醒,直接返回 */
if (retval)
return retval;
/* 检查设备是否还存在,不存在(exist=0:在tsdev_disconnect函数中设置)的话直接返回 */
if (!list->tsdev->exist)
return -ENODEV;
/* 有数据,循环读取用户所需要都数据 */
while (list->head != list->tail &&
retval + sizeof (struct ts_event) <= count) {
if (copy_to_user (buffer + retval, list->event + list->tail,
sizeof (struct ts_event)))
return -EFAULT;
list->tail = (list->tail + 1) & (TSDEV_BUFFER_SIZE - 1);//更新读指针
retval += sizeof (struct ts_event);//更新读字节数
}
return retval;
}
#################
<s3c2410-ts.c>
#################
input_report_abs(&ts.dev, ABS_X, ts.xp);
input_report_abs(&ts.dev, ABS_Y, ts.yp);
input_report_key(&ts.dev, BTN_TOUCH, 1);
input_report_abs(&ts.dev, ABS_PRESSURE, 1);
input_sync(&ts.dev);
###########################
<input.h>
###########################
static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_ABS, code, value);
}
##########################
<input.c>
##########################
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;
........................................................................................................
switch (type) {
case EV_ABS:
if (code > ABS_MAX || !test_bit(code, dev->absbit))//一些条件测试
return;
if (dev->absfuzz[code]) {
if ((value > dev->abs[code] - (dev->absfuzz[code] >> 1)) &&
(value < dev->abs[code] + (dev->absfuzz[code] >> 1)))
return;
if ((value > dev->abs[code] - dev->absfuzz[code]) &&
(value < dev->abs[code] + dev->absfuzz[code]))
value = (dev->abs[code] * 3 + value) >> 2;
if ((value > dev->abs[code] - (dev->absfuzz[code] << 1)) &&
(value < dev->abs[code] + (dev->absfuzz[code] << 1)))
value = (dev->abs[code] + value) >> 1;
}
if (dev->abs[code] == value)//比较当前值与上一次都值是否相同,相同则不作处理
return;
dev->abs[code] = value;//备份当前值,以便下一次作比较
break;
...............................................................................................................
if (type != EV_SYN)
dev->sync = 0;
if (dev->grab)
dev->grab->handler->event(dev->grab, type, code, value);
else
list_for_each_entry(handle, &dev->h_list, d_node)//通过input_dev找出与其联系的input_handle
if (handle->open)//相应的接口设备(比如tsdev)被打开(通过调用tsdev.c的tsdev_open函数进而调用input_open_device
函数增加handle->open的计数值)
handle->handler->event(handle, type, code, value);//调用该接口设备的event函数对数据进行处理
}
################
在<tsdev.c>结束
################
static void tsdev_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
struct tsdev *tsdev = handle->private;
struct tsdev_list *list;
struct timeval time;
switch (type) {
case EV_ABS:
switch (code) {
case ABS_X:
tsdev->x = value;//记录x坐标值
break;
case ABS_Y:
tsdev->y = value;//记录y坐标值
break;
case ABS_PRESSURE:
if (value > handle->dev->absmax[ABS_PRESSURE])
value = handle->dev->absmax[ABS_PRESSURE];
value -= handle->dev->absmin[ABS_PRESSURE];
if (value < 0)
value = 0;
tsdev->pressure = value;//记录触摸屏的按压状态
break;
}
break;
...................................................................................................
if (type != EV_SYN || code != SYN_REPORT)//键值的传递以EV_SYN为结束标志(通过input_sync函数),等到数据都填充好tsdev结构后再统一发送出去,否则直接返回,继续填充另一个数据
return;
list_for_each_entry(list, &tsdev->list, node) { //通过tsdev获取struct tsdev_list结构(在tsdev_open函数中定义):
//list_add_tail(&list->node, &tsdev_table[i]->list);
int x, y, tmp;
do_gettimeofday(&time); //填充事件的时间
list->event[list->head].millisecs = time.tv_usec / 100;
list->event[list->head].pressure = tsdev->pressure;//填充触摸屏的状态
x = tsdev->x;
y = tsdev->y;
/* Calibration */
if (!list->raw) {
x = ((x * tsdev->cal.xscale) >> 8) + tsdev->cal.xtrans;
y = ((y * tsdev->cal.yscale) >> 8) + tsdev->cal.ytrans;
if (tsdev->cal.xyswap) {
tmp = x; x = y; y = tmp;
}
}
list->event[list->head].x = x; //填充x坐标值
list->event[list->head].y = y; //填充y坐标值
list->head = (list->head + 1) & (TSDEV_BUFFER_SIZE - 1);//更新写指针
kill_fasync(&list->fasync, SIGIO, POLL_IN);
}
wake_up_interruptible(&tsdev->wait);//唤醒睡眠在tsdev->wait下等待数据都进程读取数据。至此,数据传递过程结束,开始新一轮的数据传递。
}
posted @
2007-08-27 08:58 lfc 阅读(5393) |
评论 (1) |
编辑 收藏
前面对s3c2410的触摸屏驱动进行了分析,现深入一层,对其所在的输入子系统进行刺探。
首先引用一个不错的帖子,对2.6内核的输入子系统进行一个大致的描述:
引:
在做触摸屏?对于输入子系统,相信你也早看了网上一些介绍文章文章了,
读一下就可了解对其基本架构,剩下的只是一些源码细节阅读。
输入子系统的3层间的联系是很简单的,驱动层的核心结构为struct input_dev:
struct input_dev {
...
struct list_head h_list;
...
};
在input_register_device时就会将input_dev与input_handle联系起来;
所谓联系就是将有关的input_handle链入以input_dev中h_list为Hash头的链中;
而事件处理层的核心结构是struct input_handler:
struct input_handler {
...
struct list_head h_list;
...
};
在input_register_handler时同样会将input_handler与input_handle联系起来,
所谓联系就是将有关的input_handle链入以input_handler中h_list为Hash头的链中;
由上可见input_handle即是一个用于关联驱动层input_dev和事件处理
层input_handler的中间结构:
struct input_handle {
...
struct input_dev *dev;
struct input_handler *handler;
struct list_head d_node;
struct list_head h_node;
};
其中d_node用于input_dev链,h_node用于input_handler链,有了input_handle,
就把相关dev与handler联系起来,相互能容易的找到。
注: 原文请看一下网址:http://bbs.ustc.edu.cn/cgi/bbstcon?board=Kernel&file=M.1179398612.A看了以上的内容,相信你对2.6内核的输入子系统应该有个大概的了解了,
现在我就input_dev
、input_handle、input_handler这三者建立联系的过程进行详细的分析:
触摸屏驱动中,s3c2410ts_probe函数的最后一步,调用input_register_device函数开始进入三者建立联系的过程:
void input_register_device(struct input_dev *dev)
{
struct input_handle *handle;
struct input_handler *handler;
struct input_device_id *id;
........................................................................................
INIT_LIST_HEAD(&dev->h_list);
list_add_tail(&dev->node, &input_dev_list);
list_for_each_entry(handler, &input_handler_list, node)
if (!handler->blacklist || !input_match_device(handler->blacklist, dev))
if ((id = input_match_device(handler->id_table, dev)))
if ((handle = handler->connect(handler, dev, id)))
input_link_handle(handle);
..........................................................................................
}
注:
我只保留重要的部分,省略号部分不是我关心的,以下同。
list_for_each_entry(handler, &input_handler_list, node)的作用在于:
从input_handler_list的链表中提取input_handler的指针。
##################################################################################
那这个input_handler的指针又是何时存放在input_handler_list链表里面的呢?
答案是像tsdev.c这些接口驱动里面调用input_register_handler
进而调用list_add_tail(&handler->node, &input_handler_list);
把其input_handler指针加进input_handler_list里面,详细请查看源码,在此不做详细分析。
###################################################################################
获取了input_handler指针后通过input_match_device进行匹配选择:
static struct input_device_id *input_match_device(struct input_device_id *id, struct input_dev *dev)
{
int i;
for (; id->flags || id->driver_info; id++) {
................................................................
MATCH_BIT(evbit, EV_MAX);
MATCH_BIT(keybit, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
MATCH_BIT(swbit, SW_MAX);
return id;
}
return NULL;
}
该函数拿刚才获得的input_handler指针所拥有的特性表handler->id_table
与我们所注册的input_dev的特性表dev.id进行对照。
仍以触摸屏驱动s3c2410-ts.c与触摸屏接口tsdev.c为例:
s3c2410-ts.c:
ts.dev.evbit[0] = BIT(EV_SYN) | BIT(EV_KEY) | BIT(EV_ABS);
ts.dev.keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_set_abs_params(&ts.dev, ABS_X, 0, 0x3FF, 0, 0);
input_set_abs_params(&ts.dev, ABS_Y, 0, 0x3FF, 0, 0);
input_set_abs_params(&ts.dev, ABS_PRESSURE, 0, 1, 0, 0);
ts.dev.id.bustype = BUS_RS232;
ts.dev.id.vendor = 0xDEAD;
ts.dev.id.product = 0xBEEF;
ts.dev.id.version = S3C2410TSVERSION;
tsdev.c:
static struct input_device_id tsdev_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT
| INPUT_DEVICE_ID_MATCH_RELBIT,
.evbit = { BIT(EV_KEY) | BIT(EV_REL) },
.keybit = { [LONG(BTN_LEFT)] = BIT(BTN_LEFT) },
.relbit = { BIT(REL_X) | BIT(REL_Y) },
},/* A mouse like device, at least one button, two relative axes */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT
| INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT(EV_KEY) | BIT(EV_ABS) },
.keybit = { [LONG(BTN_TOUCH)] = BIT(BTN_TOUCH) },
.absbit = { BIT(ABS_X) | BIT(ABS_Y) },
},/* A tablet like device, at least touch detection, two absolute axes */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT(EV_ABS) },
.absbit = { BIT(ABS_X) | BIT(ABS_Y) | BIT(ABS_PRESSURE) },
},/* A tablet like device with several gradations of pressure */
{},/* Terminating entry */
};
可以看到,tsdev.c接口定义了三项特性,对应id为0、1、2,
input_match_device函数依次取出其中的选项与s3c2410-ts.c里面定义的input_dev的选项进行对比。
这里对比的标准是tsdev.c里面定义的选项s3c2410-ts.c里面必须满足,否则continue,继续判断下一个id号的选项。
详细请看MATCH_BIT这个宏的定义:
#define MATCH_BIT(bit, max) \
for (i = 0; i < NBITS(max); i++) \
if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
break; \
if (i != NBITS(max)) \
continue;
例如:
在这里,tsdev.c定义的id为0的选项里面定义的BIT(EV_REL)这一项
在s3c2410-ts.c里面定义的input_dev设备上是不具备的,
所以,执行到MATCH_BIT(evbit, EV_MAX);后直接continue,
继续判断tsdev.c里面id为1的选项,直到找到合适的,然后返回真,否则返回NULL。
###########################################################################################
在list_for_each_entry(handler, &input_handler_list, node)
这个大循环里与我们所注册的input_dev所匹配的不限于一个接口,
例如,以下是我的调试记录:
s3c2410 TouchScreen successfully loaded
kbd
input_match_device
mousedev
input_match_device
mousedev_connect
joydev
input_match_device
evdev
input_match_device
evdev_connect
tsdev
input_match_device
tsdev_connect
evbug
input_match_device
evbug_connect
可以看到,对于s3c2410-ts.c里面定义的input_dev设备,同时与其匹配的就有
mousedev、evdev、tsdev、evbug等众多接口(不知道我的理解是否正确,如果理解错了,还望指正^_^)
###########################################################################################
找到匹配的选项以后,就可以开始着手把input_dev、input_handle、input_handler这三者联系齐来了,具体调用
handle = handler->connect(handler, dev, id)函数,
主要的目的是填充input_handle结构,然后接着调用
input_link_handle(handle)函数:
static void input_link_handle(struct input_handle *handle)
{
list_add_tail(&handle->d_node, &handle->dev->h_list);
list_add_tail(&handle->h_node, &handle->handler->h_list);
}
看到吧,就是上面那位大侠提到的,把input_handle分别链入input_dev和input_handler中h_list为Hash头的链中。
好了,到此,input_dev、input_handle、input_handler这三者总算是联系起来了^_^
posted @
2007-08-24 15:33 lfc 阅读(6585) |
评论 (0) |
编辑 收藏
驱动不是很多,在此把它贴出来然后加上必要的注释:
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/init.h>
#include <linux/serio.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/arch/regs-adc.h>
#include <asm/arch/regs-gpio.h>
#include <asm/arch/s3c2410-ts.h>
#include <asm/hardware/clock.h>
/* For ts.dev.id.version */
#define S3C2410TSVERSION 0x0101
#define WAIT4INT(x) (((x)<<8) | S3C2410_ADCTSC_YM_SEN | S3C2410_ADCTSC_YP_SEN | S3C2410_ADCTSC_XP_SEN | S3C2410_ADCTSC_XY_PST(3))
#define AUTOPST (S3C2410_ADCTSC_YM_SEN | S3C2410_ADCTSC_YP_SEN | S3C2410_ADCTSC_XP_SEN | S3C2410_ADCTSC_AUTO_PST | S3C2410_ADCTSC_XY_PST(0))
#define DEBUG_LVL KERN_DEBUG
MODULE_AUTHOR("Arnaud Patard <arnaud.patard@rtp-net.org>");
MODULE_DESCRIPTION("s3c2410 touchscreen driver");
MODULE_LICENSE("GPL");
/*
* Definitions & global arrays.
*/
static char *s3c2410ts_name = "s3c2410 TouchScreen";
/*
* Per-touchscreen data.
*/
struct s3c2410ts {
struct input_dev dev;
long xp;
long yp;
int count;
int shift;
char phys[32];
};
static struct s3c2410ts ts;
static void __iomem *base_addr;
static inline void s3c2410_ts_connect(void)
{
s3c2410_gpio_cfgpin(S3C2410_GPG12, S3C2410_GPG12_XMON);
s3c2410_gpio_cfgpin(S3C2410_GPG13, S3C2410_GPG13_nXPON);
s3c2410_gpio_cfgpin(S3C2410_GPG14, S3C2410_GPG14_YMON);
s3c2410_gpio_cfgpin(S3C2410_GPG15, S3C2410_GPG15_nYPON);
}
static void
touch_timer_fire(unsigned long data)
{
unsigned long data0;
unsigned long data1;
int updown;
/*
读取stylus的状态
0 = Stylus down state
1 = Stylus up state
*/
data0 = readl(base_addr+S3C2410_ADCDAT0);
data1 = readl(base_addr+S3C2410_ADCDAT1);
updown = (!(data0 & S3C2410_ADCDAT0_UPDOWN)) && (!(data1 & S3C2410_ADCDAT1_UPDOWN));
/*
更新stylus状态寄存器updown:
1 = down
0 = up
*/
/*
touch_timer_fire这个函数主要实现以下功能:
1、stylus down的时候,在中断函数
stylus_updown里面被调用,
此时缓存区没有数据,ts.count为0,所以只是简单的设置ad转换的模式,然后开启ad转换。
2、但ADC中断函数stylus_action把缓冲区填满的时候,作为中断后半段函数稍后被调用,
此时ts.count为4,算出其平均值后,交给事件处理层(Event Handler)处理,
主要是填写缓冲,然后唤醒等待输入数据的进程。
3、stylus抬起,等到缓冲区填满后(可能会包含一些无用的数据)被调用,
这时候判断出
stylus up,报告
stylus up事件,重新等待
stylus down。
if (updown) {
if (ts.count != 0) { <功能2>
/* 求平均值 */
ts.xp >>= ts.shift;
ts.yp >>= ts.shift;
#ifdef CONFIG_TOUCHSCREEN_S3C2410_DEBUG
{
struct timeval tv;
do_gettimeofday(&tv);
printk(DEBUG_LVL "T: %06d, X: %03ld, Y: %03ld\n", (int)tv.tv_usec, ts.xp, ts.yp);
}
#endif
/* 报告x、y的绝对坐标值 */
input_report_abs(&ts.dev, ABS_X, ts.xp);
input_report_abs(&ts.dev, ABS_Y, ts.yp);
/* 报告按键事件,键值为1(代表触摸屏对应的按键被按下) */
input_report_key(&ts.dev, BTN_TOUCH, 1);
/* 报告触摸屏的状态,1表明触摸屏被按下 */
input_report_abs(&ts.dev, ABS_PRESSURE, 1);
/* 等待接收方受到数据后回复确认,用于同步 */
input_sync(&ts.dev);
}
<功能1>
ts.xp = 0;
ts.yp = 0;
ts.count = 0;
writel(S3C2410_ADCTSC_XP_PULL_UP_DIS | AUTOPST, base_addr+S3C2410_ADCTSC);
/* 设置触摸屏的模式为AUTOPST */
writel(readl(base_addr+S3C2410_ADCCON) | S3C2410_ADCCON_ENABLE_START, base_addr+S3C2410_ADCCON);
/* 启动ADC转换 */
}
else { <功能3>
ts.count = 0;
/* 报告按键事件,键值为1(代表触摸屏对应的按键被释放) */
input_report_key(&ts.dev, BTN_TOUCH, 0);
/* 报告触摸屏的状态,0表明触摸屏没被按下 */
input_report_abs(&ts.dev, ABS_PRESSURE, 0);
/* 等待接收方受到数据后回复确认,用于同步 */
input_sync(&ts.dev);
/* 进入s3c2410触摸屏提供的,Waiting for Interrupt Mode,waits for Stylus down */
writel(WAIT4INT(0), base_addr+S3C2410_ADCTSC);
}
}
static struct timer_list touch_timer =
TIMER_INITIALIZER(touch_timer_fire, 0, 0);
static irqreturn_t
stylus_updown(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long data0;
unsigned long data1;
int updown;
/*
读取ADCDAT0/1寄存器,判断Stylus的状态:
0 = Stylus down state
1 = Stylus up state
*/
data0 = readl(base_addr+S3C2410_ADCDAT0);
data1 = readl(base_addr+S3C2410_ADCDAT1);
updown = (!(data0 & S3C2410_ADCDAT0_UPDOWN)) && (!(data1 & S3C2410_ADCDAT1_UPDOWN));
/*
更新stylus状态寄存器updown:
1 = down
0 = up
*/
/* TODO we should never get an interrupt with updown set while
* the timer is running, but maybe we ought to verify that the
* timer isn't running anyways. */
/* 判断出stylus down,调用touch_timer_fire函数 */
if (updown)
touch_timer_fire(0);
return IRQ_HANDLED;
}
static irqreturn_t
stylus_action(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long data0;
unsigned long data1;
data0 = readl(base_addr+S3C2410_ADCDAT0);
data1 = readl(base_addr+S3C2410_ADCDAT1);
/*
触摸屏的XY线接的是反的,所以只好这样做了
另外,可以参考这个方法:
http://www.arm9bbs.com/redirect.php?tid=637&goto=lastpost
*/
/**************************modify by lfc********************/
ts.yp += data0 & S3C2410_ADCDAT0_XPDATA_MASK;
ts.xp += data1 & S3C2410_ADCDAT1_YPDATA_MASK;
/***********************************************************/
ts.count++;
if (ts.count < (1<<ts.shift)) {
/* 缓冲区未满,再次激活ADC转换 */
writel(S3C2410_ADCTSC_XP_PULL_UP_DIS | AUTOPST, base_addr+S3C2410_ADCTSC);
writel(readl(base_addr+S3C2410_ADCCON) | S3C2410_ADCCON_ENABLE_START, base_addr+S3C2410_ADCCON);
} else {
/* 缓冲区满,激活下半部处理程序
touch_timer_fire,处理接收数据 */ mod_timer(&touch_timer, jiffies+1);
writel(WAIT4INT(1), base_addr+S3C2410_ADCTSC);
}
return IRQ_HANDLED;
}
static struct clk *adc_clock;
/*
* The functions for inserting/removing us as a module.
*/
static int __init
s3c2410ts_probe(struct device *dev)
{
struct s3c2410_ts_mach_info *info;
info = ( struct s3c2410_ts_mach_info *)dev->platform_data;
注:
s3c2410_ts_mach_info这个结构需要我们去填充,里面存放的是触摸屏需要的一些配置参数,见下面的附录部分。
if (!info)
{
printk(KERN_ERR "Hm... too bad : no platform data for ts\n");
return -EINVAL;
}
#ifdef CONFIG_TOUCHSCREEN_S3C2410_DEBUG
printk(DEBUG_LVL "Entering s3c2410ts_init\n");
#endif
adc_clock = clk_get(NULL, "adc");
if (!adc_clock) {
printk(KERN_ERR "failed to get adc clock source\n");
return -ENOENT;
}
clk_use(adc_clock);//这个在高版本下已经不需要了
clk_enable(adc_clock);
#ifdef CONFIG_TOUCHSCREEN_S3C2410_DEBUG
printk(DEBUG_LVL "got and enabled clock\n");
#endif
base_addr=ioremap(S3C2410_PA_ADC,0x20);//映射触摸屏的控制寄存器,应该不需要解析了吧^_^
if (base_addr == NULL) {
printk(KERN_ERR "Failed to remap register block\n");
return -ENOMEM;
}
/* Configure GPIOs */
s3c2410_ts_connect();
/*以下根据我们提供的s3c2410_ts_mach_info结构,配置触摸屏的一些控制寄存器*/
/* Set the prscvl*/
if ((info->presc&0xff) > 0)
writel(S3C2410_ADCCON_PRSCEN | S3C2410_ADCCON_PRSCVL(info->presc&0xFF),\
base_addr+S3C2410_ADCCON);
else
writel(0,base_addr+S3C2410_ADCCON);
/* Initialise the adcdly registers */
if ((info->delay&0xffff) > 0)
writel(info->delay & 0xffff, base_addr+S3C2410_ADCDLY);
/* 进入s3c2410触摸屏提供的Waiting for Interrupt Mode,waits for Stylus down.The controller generates Interrupt (INT_TC) signals when the Stylus is down on Touch Screen Panel.*/
writel(WAIT4INT(0), base_addr+S3C2410_ADCTSC);
/* Initialise input stuff */
memset(&ts, 0, sizeof(struct s3c2410ts));
/* 以下配置2.6内核划分出来的输入设备 */
init_input_dev(&ts.dev);
ts.dev.evbit[0] = BIT(EV_SYN) | BIT(EV_KEY) | BIT(EV_ABS);
/*
evbit字段用来定义该输入设备可以支持的(产生和响应)的事件的类型,
在此触摸屏设置为支持同步(EN_SYN)、按键(EN_KEY)、绝对坐标(EV_ABS)事件
*/
ts.dev.keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
/* 设置所支持的按键(键值),触摸屏可以看成只有一个按键的设备 */
input_set_abs_params(&ts.dev, ABS_X, 0, 0x3FF, 0, 0);
/* 设置绝对坐标x的最小最大值,在这是0-0x3FF */
input_set_abs_params(&ts.dev, ABS_Y, 0, 0x3FF, 0, 0);
/* 设置绝对坐标y的最小最大值,在这是0-0x3FF */
input_set_abs_params(&ts.dev, ABS_PRESSURE, 0, 1, 0, 0);
sprintf(ts.phys, "ts0");
ts.dev.private = &ts;
ts.dev.name = s3c2410ts_name;
ts.dev.phys = ts.phys;
ts.dev.id.bustype = BUS_RS232;
ts.dev.id.vendor = 0xDEAD;
ts.dev.id.product = 0xBEEF;
ts.dev.id.version = S3C2410TSVERSION;
ts.shift = info->oversampling_shift;
/*
这个比较重要,配置输入数据的缓存区大小,
在这里oversampling_shift设为2,也就是缓存区的大小为4(1<<2)
*/
/* ADC转换中断,转换结束后触发 */
if (request_irq(IRQ_ADC, stylus_action, SA_SAMPLE_RANDOM,
"s3c2410_action", &ts.dev)) {
printk(KERN_ERR "s3c2410_ts.c: Could not allocate ts IRQ_ADC !\n");
iounmap(base_addr);
return -EIO;
}
/*
检测stylus updown的中断,设置为Waiting for Interrupt Mode时,
The controller generates Interrupt (INT_TC) signals when the Stylus is down on Touch Screen Panel,还记得吧^_^
*/
if (request_irq(IRQ_TC, stylus_updown, SA_SAMPLE_RANDOM,
"s3c2410_action", &ts.dev)) {
printk(KERN_ERR "s3c2410_ts.c: Could not allocate ts IRQ_TC !\n");
iounmap(base_addr);
return -EIO;
}
printk(KERN_INFO "%s successfully loaded\n", s3c2410ts_name);
/* All went ok, so register to the input system */
input_register_device(&ts.dev);//注册输入设备
return 0;
}
/* 好了,一切都准备好了,等待stylus updown的发生然后进入IRQ_TC中断处理程序吧^_^ */
static int s3c2410ts_remove(struct device *dev)
{
disable_irq(IRQ_ADC);
disable_irq(IRQ_TC);
free_irq(IRQ_TC,&ts.dev);
free_irq(IRQ_ADC,&ts.dev);
if (adc_clock) {
clk_disable(adc_clock);
clk_unuse(adc_clock);
clk_put(adc_clock);
adc_clock = NULL;
}
input_unregister_device(&ts.dev);
iounmap(base_addr);
return 0;
}
static struct device_driver s3c2410ts_driver = {
.name = "s3c2410-ts",
.bus = &platform_bus_type,
.probe = s3c2410ts_probe,
.remove = s3c2410ts_remove,
};
int __init s3c2410ts_init(void)
{
return driver_register(&s3c2410ts_driver);
}
void __exit s3c2410ts_exit(void)
{
driver_unregister(&s3c2410ts_driver);
}
module_init(s3c2410ts_init);
module_exit(s3c2410ts_exit);
附录:
见/arch/arm/mach-s3c2410/dev.c文件:
static struct s3c2410_ts_mach_info sbc2410_ts_platdata = {
.delay = 10000,
.presc = 49,
.oversampling_shift = 2,
};
struct platform_device s3c_device_ts = {
.name = "s3c2410-ts",
.id = -1,
.dev = {
.platform_data = &sbc2410_ts_platdata,
}
};
EXPORT_SYMBOL(s3c_device_ts);
posted @
2007-08-22 09:15 lfc 阅读(8364) |
评论 (5) |
编辑 收藏
1、编译libz:
首先安装 zlib 库,这个是后面的库的编译基础。
http://www.zlib.net/zlib-1.2.3.tar.gz
解压
tar zxf zlib-1.2.3.tar.gz
由于 zlib 库的configure 脚本不支持交叉编译选项,可以采用以下方法来解决:
1)CC=arm-linux-gcc
./configure --prefix=/usr/local/arm/2.95.3/arm-linux/ --shared
注意:这里配置指向 /usr/local/arm/2.95.3/arm-linux/ 目录,会自动安装在 /usr/local/arm/2.95.3/arm-linux/ [include,lib] 目录下,
千万不要装错目录了,不然后面会找不到这个库的。
2)make
3)make install
安
装完后检查一下目录 /usr/local/arm/2.95.3/arm-linux/ [include,lib] ,假如 include
中没有 zlib.h 之类的头文件,lib 中没有 libz.so.1.2.3 ,那就自己手动拷到这些目录下去,记着拷的时候把所有的 *.h
都需要拷过去,在拷库的时候用 cp –a libz.* /…./lib 就行,要用上 –a 选项
2、编译mtd-utils:
下载mtd-utils-1.0.0.tar.gz:
ftp://ftp.infradead.org/pub/mtd-utils/mtd-utils-1.0.0.tar.gz解压目录为mtd-utils-1.0.0
#cd mtd-utils-1.0.0
1) 修改Makefile
CROSS=arm-linux-
2) make ( 用file命令查看,如 file mkfs.jffs2 )
#file mkfs.jffs2
mkfs.jffs2: ELF 32-bit LSB executable, ARM, version 1 (ARM), for GNU/Linux 2.0.0, dynamically linked (uses shared libs), for GNU/Linux 2.0.0, not stripped
可知:交叉编译成功。
posted @
2007-08-10 16:57 lfc 阅读(10102) |
评论 (5) |
编辑 收藏
注:
原文出自taoyuetao大侠的博客上:
http://www.eetop.cn/blog/html/45/11145_itemid_1838.html
小弟参考之研究s3c2410相关代码,然后做了稍微的修改,作为一个学习笔记,方便以后的学习,也希望对后人有所帮助^_^
函数__mmap_switched介绍:
/*
* The following fragment of code is
executed with the MMU on, and uses
* absolute addresses; this is not
position independent.
*
*
r0 = cp#15 control register
*
r1 = machine ID
*
r9 = processor ID
*/
1: .type __mmap_switched,
%function
2: __mmap_switched:
3: adr r3, __switch_data + 4
4: ldmia r3!, {r4, r5, r6,
r7}
5: cmp r4, r5 @
Copy data segment if needed
6: 1: cmpne r5, r6
7: ldrne fp, [r4], #4
8: strne fp, [r5], #4
9: bne 1b
10: mov fp, #0 @ Clear BSS (and zero fp)
11:1: cmp r6, r7
12: strcc fp, [r6],#4
13: bcc 1b
14: ldmia r3, {r4, r5, r6, sp}
15: str r9, [r4] @ Save processor ID
16: str r1, [r5] @ Save machine type
17: bic r4, r0, #CR_A @ Clear 'A' bit
18: stmia r6, {r0, r4} @
Save control register values
19: b start_kernel
20: .type __switch_data, %object
21:__switch_data:
22: .long __mmap_switched
23: .long __data_loc @
r4
24: .long __data_start @ r5
25: .long __bss_start @
r6
26: .long _end @
r7
27: .long processor_id @ r4
28: .long __machine_arch_type @ r5
29: .long cr_alignment @ r6
30: .long init_thread_union + THREAD_START_SP @ sp
程序的4行执行完成之后的结果是r4=__data_loc,r5=__data_start,r6=__bss_start,r7=_end,第10-13行将__bss_start到_end清零,定义在vmlinux.lds文件中,如下:
.bss :
{
__bss_start = .;
/*
BSS
*/
*(.bss)
*(COMMON)
_end = . ;
}
第15-16行分别将处理器类型和机器类型存储到变量processor_id和__machine_arch_type中,这些变量以后会在start_kernel->setup_arch中使用,来得到当前处理器的struct
proc_info_list结构和当前系统的machine_desc结构的数据。
第17-18将processor control
register保存到cr_alignment中,19行跳转到init/main.c中的start_kernel进入内核启动的第二阶段。
posted @
2007-08-04 10:24 lfc 阅读(985) |
评论 (2) |
编辑 收藏
注:
原文出自taoyuetao大侠的博客上:
http://www.eetop.cn/blog/html/45/11145_itemid_1367.html
小弟参考之研究s3c2410相关代码,然后做了稍微的修改,作为一个学习笔记,方便以后的学习,也希望对后人有所帮助^_^
在网上参考很多高手的文章,又加入了自己的一点儿内容,整理了一下,里面还有很多不明白的地方,而且也会有理解错误的地方,望高手指点,自己也会不断进行修改
当进入linux内核后,arch/arm/kernel/head.S是内核最先执行的一个文件,包括从内核入口ENTRY(stext)到start_kernel之间的初始化代码,下面以我所使用的平台s3c2410为例,说明一下他的汇编代码:
1: __INIT
2: .type stext, %function
3: ENTRY(stext)
/* 程序状态,禁止FIQ、IRQ,设定SVC模式 */
4: msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @
ensure svc mode
@ and irqs disabled
/* 判断CPU类型,查找运行的CPU ID值与Linux编译支持的ID值是否支持 */
5: bl __lookup_processor_type @
r5=procinfo r9=cpuid
6: movs r10, r5 @
invalid processor (r5=0)?
/* 判断如果r10的值为0,则表示函数执行错误,跳转到出错处理,*/
7: beq __error_p @
yes, error 'p'
/* 判断体系类型,查看R1寄存器的Architecture Type值是否支持 */
8: bl __lookup_machine_type @ r5=machinfo
9: movs r8, r5 @
invalid machine (r5=0)?
/* 判断如果r8的值为0,则表示函数执行错误,跳转到出错处理,*/
10: beq __error_a @
yes, error 'a'
/* 创建核心页表 */
11: bl __create_page_tables
12: ldr r13, __switch_data @ address to jump to after
@ mmu has been enabled
13: adr lr, __enable_mmu @ return (PIC) address
14: add pc, r10, #PROCINFO_INITFUNC
第4行,准备进入SVC工作模式,同时关闭中断(I_BIT)和快速中断(F_BIT)
第5行,查看处理器类型,主要是为了得到处理器的ID以及页表的flags。
第8行,查看一些体系结构的信息。
第11行,建立页表。
第14行,跳转到处理器的初始化函数,其函数地址是从__lookup_processor_type中得到的,需要注意的是第13行,当处理器初始化完成后,会直接跳转到__enable_mmu去执行,
这是由于初始化函数最后的语句是mov pc, lr。
posted @
2007-08-04 09:23 lfc 阅读(991) |
评论 (0) |
编辑 收藏