沿的内容;其二是所作工作要具备很高的实用背景。解决第一个问题的办法就
是找出这个方向公认最牛的几个超级大拿(看看他们都在作什么)和最权威的
出版物(阅读上面最新的文献),解决第二个问题的办法是你最好能够找到一个
实际应用的项目,边做边写文章。
做好这几点的途径之一就是充分利用网络资源,特别是权威网站和大拿们的个人主页。下面是我收集的一些资源,希望对大家有用。(这里我要感谢SMTH AI版的alamarik和Graphics版的faintt)
导航栏:
[1]研究群体
[2]大拿主页
[3]前沿期刊
[4]GPL软件资源
[5]搜索引擎
一、研究群体
http://www-2.cs.cmu.edu/~cil/vision.html
这是卡奈基梅隆大学的计算机视觉研究组的主页,上面提供很全的资料,从发表文章的下载到演示程序、测试图像、常用链接、相关软硬件,甚至还有一个搜索引擎。
http://www.cmis.csiro.au/IAP/zimage.htm
这是一个侧重图像分析的站点,一般。但是提供一个Image Analysis环境---ZIMAGE and SZIMAGE。
http://www.via.cornell.edu/
康奈尔大学的计算机视觉和图像分析研究组,好像是电子和计算机工程系的。侧重医学方面的研究,但是在上面有相当不错资源,关键是它正在建设中,能够跟踪一些信息。
http://www2.parc.com/istl/groups/did/didoverview.shtml
有一个很有意思的项目:DID(文档图像解码)。
http://www-cs-students.stanford.edu/
斯坦福大学计算机系主页,自己找吧:(
http://www.fmrib.ox.ac.uk/analysis/
主要研究:Brain Extraction Tool,Nonlinear noise reduction,Linear Image Registration,
Automated Segmentation,Structural brain change analysis,motion correction,etc.
http://www.cse.msu.edu/prip/
这是密歇根州立大学计算机和电子工程系的模式识别--图像处理研究组,它的FTP上有许多的文章(NEW)。
http://pandora.inf.uni-jena.de/p/e/index.html
德国的一个数字图像处理研究小组,在其上面能找到一些不错的链接资源。
http://www-staff.it.uts.edu.au/~sean/CVCC.dir/home.html
CVIP(used to be CVCC for Computer Vision and Cluster Computing) is a research group focusing on cluster-based computer vision within the Spiral Architecture.
http://cfia.gmu.edu/
The mission of the Center for Image Analysis is to foster multi-disciplinary research in image, multimedia and related technologies by establishing links
between academic institutes, industry and government agencies, and to transfer key technologies to
help industry build next
generation commercial and military imaging and multimedia systems.
http://peipa.essex.ac.uk/info/groups.html
可以通过它来搜索全世界各地的知名的计算机视觉研究组(CV Groups),极力推荐。
二、图像处理GPL库
http://www.sai.msu.su/sal/E/1/CPPIMA.html
Cppima 是一个图像处理的C++函数库。这里有一个较全面介绍它的库函数的文档,当然你也可以下载压缩的GZIP包,里面包含TexInfo格式的文档。
http://iraf.noao.edu/
Welcome to the IRAF Homepage! IRAF is the Image Reduction and Analysis Facility, a general purpose software
system for the reduction and analysis of astronomical data.
http://entropy.brni-jhu.org/tnimage.html
一个非常不错的Unix系统的图像处理工具,看看它的截图。你可以在此基础上构建自己的专用图像处理工具包。
http://sourceforge.net/projects/
这是GPL软件集散地,到这里找你想要得到的IP库吧。
三、搜索资源
当然这里基本的搜索引擎还是必须要依靠的,比如Google等,可以到我常用的链接看看。下面的链接可能会节省你一些时间:
http://sal.kachinatech.com/
http://cheminfo.pku.edu.cn/mirrors/SAL/index.shtml
四、大拿网页
http://www.ai.mit.edu/people/wtf/
这位可是MIT人工智能实验室的BILL FREEMAN。大名鼎鼎!专长是:理解--贝叶斯模型。
http://www.merl.com/people/brand/
MERL(Mitsubishi Electric Research Laboratory)中的擅长“Style Machine”高手。
http://research.microsoft.com/~ablake/
CV界极有声望的A.Blake 1977年毕业于剑桥大学三一学院并或数学与电子科学学士学位。之后在MIT,Edinburgh,Oxford先后组建过研究小组并成为Oxford的教授,直到1999年进入微软剑桥研究中心。主要工作领域是计算机视觉。
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/har/Web/home.html
这位牛人好像正在学习汉语,并且搜集了诸如“两只老虎(Two Tigers)”的歌曲,嘿嘿:)
他的主页上面还有几个牛:Shumeet Baluja, Takeo Kanade。他们的Face Detection作的绝对是世界一流。他毕业于卡奈基梅隆大学的计算机科学系,兴趣是计算机视觉。
http://www.ifp.uiuc.edu/yrui_ifp_home/html/huang_frame.html
这位老牛在1963年就获得了MIT的博士学位!他领导的Image Lab比较出名的是指纹识别。
--------------------------------------------------------------------------------
下面这些是我搜集的牛群(大部分是如日中天的Ph.D们),可以学习的是他们的Study Ways!
Finn Lindgren(Sweden):Statistical image analysis http://www.maths.lth.se/matstat/staff/finn/
Pavel Paclik(Prague):statistical pattern recognition http://www.ph.tn.tudelft.nl/~pavel/
Dr. Mark Burge:machine learning and graph theory
http://cs.armstrong.edu/burge/
yalin Wang:Document Image Analysis
http://students.washington.edu/~ylwang/
Geir Storvik: Image analysis
http://www.math.uio.no/~geirs/
Heidorn
http://alexia.lis.uiuc.edu/~heidorn/
Joakim Lindblad:Digital Image Cytometry
http://www.cb.uu.se/~joakim/index_eng.html
S.Lavirotte:
http://www-sop.inria.fr/cafe/Stephane.Lavirotte/
Sporring:scale-space techniques
http://www.lab3d.odont.ku.dk/~sporring/
Mark Jenkinson:Reduction of MR Artefacts
http://www.fmrib.ox.ac.uk/~mark/
Justin K. Romberg:digital signal processing
http://www-dsp.rice.edu/~jrom/
Fauqueur:Image retrieval by regions of interest
http://www-rocq.inria.fr/~fauqueur/
James J. Nolan:Computer Vision
http://cs.gmu.edu/~jnolan/
Daniel X. Pape:Information
http://www.bucho.org/~dpape/
Drew Pilant:remote sensing technology
http://www.geo.mtu.edu/~anpilant/index.html
五、前沿期刊(TOP10)
这里的期刊大部分都可以通过上面的大拿们的主页间接找到,在这列出主要是为了节省直接想找期刊投稿的兄弟的时间:)
IEEE Trans. On PAMI
http://www.computer.org/tpami/index.htm
IEEE Transactionson Image Processing http://www.ieee.org/organizations/pubs/transactions/tip.htm
Pattern Recognition
http://www.elsevier.com/locate/issn/00313203
Pattern Recognition Letters
http://www.elsevier.com/locate/issn/01678655